
NAVAL POSTGRADUATE SCHOOL
Monterey, California

4:4

%RADU$3

THESIS

POST CRASH FLIGHT ANALYSIS:
VISUALIZING FLIGHT

RECORDER DATA

by

Mark Jay Christian

June 1989

Thesis Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited

DTIC
S ELECE

SEP081989

i,fi4 B

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION 'DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
-Naval Postgraduate School (If applicable) Naval Postgraduate School

Code 37
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMSER
ORGANIZATION (If applicable) A

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
POST CRASH FLIGHT ANAYLSIS: VISUALIZING FLIGHT RECORDER DATA

12. PERSONAL AUTHOR(S)
Christian, Mark J.

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Master's Thesis FROM TO June 1989 97

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP 3D visual simulation system, flight data recorder visual-

ization

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Previous research has produced a real-time, three dimensional, interactive moving platform
simulator (MPS). The simulator utilizes Defense Mapping Agency digital terrain elevation
data to generate the three dimensional terrain and runs on Silicon Graphics, Inc. IRIS
4D/7OGT graphics workstations. The MPS system has been used as a basis for a variety of
military applications. We present here how the MPS system was modified to be utilized as a
crash investigation tool for U.S. Army aircraft mishaps. Flight recorder data from the
mishap aircraft is used to graphically reconstruct the flight of the aircraft. Flight
attitudes, gauge readings, switch positions, warning and advisory light indicators, and
flight control inputs are displayed. The visualization of the-flight recorder data "reatly
aids in the analysis of the causes of an aircraft mishap.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION0 UNCLASSIFIEDIUNLIMITED 0l SAME AS RPT 0l DTIC USERS Unclassified
22& NAME OF RISPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) ,2c OFFICE SY'MBUL

IMichael J. Zyda
1 1 (408) 646-2305 Code 52

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete 0 u.S. 0evernmont Priming offie. U9s - xoS .

i Unclassif ied

Approved for public release; distribution is unlimited

Post Crash Flight Analysis:
Visualizing Flight

Recorder Data

by

Mark Jay Christian
Captain, United States Army

B.S., Iowa State University, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author:

, #r !o Christian

Approved By:

ichael J. Zyda,VhAie vsor

A. John M. Yuqa# Second Reader,) I J /[--, /

Robert B. McGhee, Chairman,

Department of Computer Science

Kneale T. Mars---W "
Dean of Information and Policy s

ii

ABSTRACT

Previous research has produced a real-time, three dimensional, interactive

moving platform simulator (MPS). The simulator utilizes Defense Mapping Agency

digital terrain elevation data to generate the three dimensional terrain and runs on

Silicon Graphics, Inc. IRIS 4D/7OGT graphics workstations. The MPS system has

been used as a basis for a variety of military applications. We present here how the

MPS system was modified to be utilized as a crash investigation tool for U.S. Army

aircraft mishaps. Flight recorder data from the mishap aircraft is used to graphically

reconstruct the flight of the aircraft. Flight attitudes, gauge readings, switch

positions, warning and advisory light indicators, and flight control inputs are

displayed. The visualization of the flight recorder data greatly aids in the analysis of

the causes of an aircraft mishap.

Accenston For

NTIS IRA &I

DTIC ' , 0

t~', 1 3' i: t 1 on

By . . .

Ava l l :t itty Cod 1,3

iii _____'Dist

-- -.. -- m m mm u anumum I mmmnmn um In n immlmuILI

TABLE OF CONTENTS

I. IN TR O D U CTIO N ... 1

A. ARMY AIRCRAFT ACCIDENT INVESTIGATION 1

B. FLIGHT DATA RECORDERS .. 2

C. GRAPHICAL CRASH INVESTIGATION SYSTEM 3

D. LIMITATIONS TO THE PC BASED DISPLAY SYSTEM 3

E. AN IMPROVED GRAPHICAL DISPLAY SYSTEM 4

F. ORGANIZATION ... 5

II. FLIGHT RECORDER DATA ... 6

A. FLIGHT PARAMETERS RECORDED .. 6

B. DATA INACCURACIES ... 8

C. CONVERSION OF FLIGHT DATA FILES ... 9

Il. SOFTWARE BASIS FOR CAST ... 10

A. FOG-M SIMULATOR ... 10

B. VEH SIMULATOR .. 10

C. V EH II SIM U LATO R .. 11

D. MOVING PLATFORM SIMULATOR (MPS) ... 11

IV. MODIFICATION OF MPS FOR THE IMPLEMENTATION OF CAST 12

A. DELETION OF CODE FROM MPS .. 12

B. MODIFICATION OF DATA STRUCTURES 14

C. GRAPHICS WINDOW LAYOUT MODIFICATIONS 19

D. MODELING AND DISPLAY OF A HELICOPTER 24

1. MPS Platform Display Programs .. 24

iv

- l I I i ii

2. CAST Helicopter Display Programs .. 27

E. USER POPUP MENU INTERFACE MODIFICATIONS 29

1. Popup M enus D eleted .. 29

2. Popup Menu Options Deleted ... 30

3. Popup M enus Added ... 31

F. USER CONTROL INTERFACE MODIFICATIONS 32

1. Mouse Control Modifications ... 32

2. Dial Box Control Modifications .. 34

3. Graphics Displayed In The INDWIN Graphics Window 44

G. PLATFORM POSITION UPDATE MODIFICATIONS 44

1. Position Update In MPS 44

2. Position Update In CAST ... 45

H. MODIFICATION OF VIEWING PERSPECTIVE 46

I. ALTITUDE SMOOTHING ... 48

1. Altitude Smoothing Algorithms .. 48

2. A lgorithm Testing ... 49

3. Additional Altitude Smoothing .. 50

V. CONCLUSIONS AND RECOMMENDATIONS ... 52

A. SYSTEM PARFORMANCE .. 52

B. CAST SYSTEM LIMITATIONS AND FUTURE RESEARCH 53

1. Aircraft Placement And UTM Grid Coordinates 53

2. Operational Area Boundaries ... 54

3. Modeling Of Additional Aircraft .. 54

4. X-Y Plotting Of Flight D ata ... 55

5. Selective Fram e D isplay .. 55

6. Adverse Flight Condition Warning .. 55

v

C. CONCLUSIONS ... 55

APPENDIX A CAST USER'S GUIDE .. 57

A. PREPROCESSING FLIGHT DATA FILES ... 57

B. STARTING THE CAST SYSTEM .. 58

C. SELECTING AN AREA OF OPERATION ... 58

D. ENTERING AIRCRAFT FOR DISPLAY ... 59

E. DELETING AIRCRAFT FROM THE SYSTEM 59

F. SELECTING A PLATFORM TO OPERATE 60

G. CH -,NGING THE EYEPOINT .. 60

H. SELECTING AN ALTITUDE OPTION .. 61

I. SELECTING A FRAME DELAY OPTION .. 61

J. EXITING CAST ... 62

APPENDIX B SELECTED CAST SOURCE CODE ... 63

LIST OF REFERENCES ... 85

INITIAL DISTRIBUTION LIST ... 87

vi

LIST OF TABLES

TABLE I LOTUS 1-2-3 OUTPUT FORMAT ... 6

TABLE 2 DISCRETE FIELDS ... 7

TABLE 3 PARAMETER SAMPLE RATES AND UNITS OF
M EASUREM ENT .. 8

TABLE 4 MPS MODULES DELETED IN THE CAST
IM PLEM ENTATION ... 13

TABLE 5 PARAMETER FREQUENCY DECODING 17

TABLE 6 ALTITUDE SMOOTHING ALGORITHMS 49

TABLE 7 SMOOTHING ALGORITHM RESULTS 50

vii

LIST OF FIGURES

Figure 1 MPS Vehicle Record Structure ... 14

Figure 2 CAST Vehicle Record Structure .. 15

Figure 3 Fight Data Record Structure ... 16

Figure 4 Vehicle and Flt_datarec Linked Lists ... 18

Figure 5 MPS Graphics Window Layout .. 20

Figure 6 CAST Graphics Window Layout .. 21

Figure 7 CAST Graphics Windows .. 23

Figure 8 Display of the COBRA Helicopter Model 25

Figure 9 MPS Polygon Drawing Code ... 26

Figure 10 CAST Polygon Drawing Code .. 28

Figure 11 M PS M ouse Controls ... 33

Figure 12 CAST M ouse Controls ... 35

Figure 13 MPS Dial Box Controls for Driving a Vehicle 36

Figure 14 MPS Dial Box Controls for Flying a Missile 37

Figure 15 CAST Dial Box Controls With Eyepoint Inside Aircraft 39

Figure 16 CAST Dial Box Controls With Eyepoint Outside Aircraft 40

Figure 17 View From Inside a COBRA Helicopter .. 42

Figure 18 View of Three COBRA Helicopters in Formation Flight 43

Figure 19 Display of the Horizon in CAST and MPS 47

Figure 20 Altitude Sm oothing ... 51

vi ii

ACKNOWLEDGEMENT

I would like to thank Major Bill Teter, USA, for the use of his viewing

transformation routines. The incorporation of these routines into the CAST program

made the realistic depiction of aerial flight possible.

ix

I. INTRODUCTION

A. ARMY AIRCRAFT ACCIDENT INVESTIGATION

U.S. Army aircraft mishaps are classified as Class A, B, C, D, or E accidents

based upon the extent of damage to the aircraft involved and the severity of injury or

loss of life of personnel involved [Ref. 1:p. 13]. Class A accidents are the most

severe mishaps and Class E accidents are the least severe mishaps. The accident

rate for U.S. Army aircraft has shown a steady decrease over the past few years.

The Class A accident rate has decreased from a rate of 2.94 accidents per 100,000

hours flown during Fiscal Year 1985 to a rate of 1.84 accidents per 100,000 hours

flown during Fiscal Year 1988. During the same time, the Class A to Class C

accident rate dropped from 8.75 accidents per 100,000 hours flown to 4.76 accidents

per 100,000 hours flown [Ref. 2 :p. 35]. Much of this decrease can be attributed to the

increased emphasis on flight safety and aircraft maintenance within the Army's

Aviation commands as well as the professionalism displayed by Arm), aviators. The

findings produced from investigations of accidents that have occurred have also

contributed to the decrease in the accident rate. These findings have identified

defective components in Army' aircraft, verified flight environments that are not

suitable for Army aircraft, and found limitations in flight systems [Ref. 3 :p. 7-11. For

these investigation findings to be effective, thk. data obtained must be timely,

complete, and properly analyzed IRef. 4 :p. 2-11.

The process of investigating an aircraft crash is complicated. Although Army

aviators are trained to be highly observant, during the high pressuie of an emergency

II

situation they can not be expected to have observed everything which would like to

be known by the crash investigation team. Indeed, many times it is the case that

something not observed led to an accident. The crash investigation team must rely

upon the accounts of the mishap given by the pilots of the aircraft. Unfortunately, at

times there are no survivors of a crash and the crash investigation team has only

eyewitness accounts of the crash (if any) and the wreckage upon which to base their
findings.

B. FLIGHT DATA RECORDERS

In March 1986, the Army Chief of Staff directed that a flight data recorder project

be implemented to aid in the crash investigation process. Currently, a flight data

recorder has been developed for the UH-60 Black Hawk helicopter. The recorder has

been installed in approximately two hundred high-risk mission Black Hawk

helicopters at Fort Rucker, Alabama; Fort Bragg, North Carolina; and Fort Campbell,

Kentucky. This is an analog recorder with a continuous tape for recording of the flight

dat-. Two hours of fight data can be recorded before the tape is overwritten with new

data. A new digital flight data recorder is currently being developed to replace the

analog recorder. A flight data recorder for the AH-64 Apache is also presently under

development. The goal is to eventually equip all Army aircraft with flight data

recorders [Ref. 5:p. 361.

The UH-60 flight data recorder records sixty four flight and advisory parameters

[Ref. 61. These parameters describe the flight attitude in terms of altitude, airspeed,

roll, pitch, and yaw as well as the readings from instrument panel gauges, positions of

switches, and status of flight advisory lights. The sample rate for each parameter

varies depending upon the usefulness of the parameter. Sample rates range from

2

eight samples per second for flight attitude parameters to one sample per second for

switch position and flight advisory lights. An elapsed time counter is recorded with

each set of samples. The aircraft tail number and an error check flag are also recorded.

C. GRAPHICAL CRASH INVESTIGATION SYSTEM

To assist in the crash investigation process, a personal computer (PC) based

graphics display system has been developed under a government contract for the

United States Army Safety Center (USASC) at Fort Rucker, Alabama. The system

is run on a Compaq 386/20 Model 130 computer. This system utilizes the data

obtained from the flight data recorder of an aircraft involved in a crash. The system

has the following capabilities:

1. Any eight of the sixty four data parameters can be plotted against time at
once. The system user can specify the time interval to be used for the plot.

2. All Army aircraft have been modeled and can be displayed on the output
screen. The aircraft can be "flown" using the data from the flight recorder.
The eye position for watching the aircraft's flight can be placed inside the
aircraft to provide a pilot's perspective or can be placed anywhere outside
the aircraft to observe the total aircraft as it is "flown". As with the graphical
plotting of parameters, the time hiterval for the flight can be specified.

D. LIMITATIONS TO THE PC BASED DISPLAY SYSTEM

The Compaq PC based graphical display system has several limitations. These

limitations are caused by the limited amount of memory in the computer and the

relatively small size of the display screen. The system is also not fully developed and

at present lacks features which would enhance its usefulness. Limitations of the

current system include:

1. The model "flying" is done over flat ground which is not representative of the
flight environment in which the accident occurred.

3

2. The plotting of flight parameters and model "flying" can not be displayed
simultaneously.

3. The field of view of the pilot cannot be changed (as when the pilot is wearing
night vision goggles).

4. Only a single aircraft can be displayed at one time.

E. AN IMPROVED GRAPHICAL DISPLAY SYSTEM

In the Graphics and Video Laboratory of the Department of Computer Science at

the Naval Postgraduate School, we have developed an improved graphical display

system for crash investigation. The name of the system is the Crash Analysis

Simulation Tool (CAST) and it is run on a Silicon Graphics, Inc. IRIS 4D/70GT

graphics workstation. The system programming is based upon the Moving Platform

Simulator (MPS) which was developed by past thesis students in the Graphics and

Video Laboratory [Ref. 7]. The new crash investigation system provides a real-time,

interactive, three dimensional depiction of the flight under investigation. The

limitations of the PC based system are eliminated in the workstation based system.

The workstation system has the following capabilities:

1. Simultaneous display of flight data parameters and the flight of the aircraft.

Flight data parameters are displayed both graphically and numerically.

2. Simultaneous display of multiple aircraft in flight.

3. Placement of the eye point at either the pilot or copilot stations with a
variable field of view or outside of the aircraft.

4. Flight over three dimensional terrain. The system uses a Defense
Mapping Agency (DMA) Digital Terrain Elevation Database (DTED) to
construct the three dimensional terrain. By obtaining the terrain database
for the crash area, the system can "fly" the aircraft over the terrain on which
the crash occurred.

It is envisioned that the PC based version of the crash investigation system will

be used for immediate, preliminary analysis of an aircraft mishap. The PC based

4

system is portable and can be transported to the crash site. The workstation version

will then be utilized for follow-on, detailed analysis of the crash after leaving the

crash site.

F. ORGANIZATION

The sections of this chapter have presented the motivation for the development

of an enhanced graphical display system for the visualization of flight recorder data.

Chapter II describes the format of the flight recorder data and its conversion to the

format used in CAST. Chapter III discusses the software basis for the CAST

program. Chapter IV details the modification of the Moving Platform Simulator

(MPS) program for the implementation of CAST. Chapter V lists limitations in the

CAST system and gives recommendations for further research and development of

CAST. Appendix A contains a user's guide for CAST. Appendix B contains source

listings for new programs which were written to implement CAST.

5

II. FLIGHT RECORDER DATA

A. FLIGHT PARAMETERS RECORDED

When an aircraft is involved in a mishap, the flight data recorder is recovered

and the data is extracted by a crash investigation team from the United States Army

Safety Center. The team uses a device which transcribes the raw flight data into a

Lotus 1-2-3 format which is used by the Compaq PC based graphical display

system. The transcription device utilizes sixty seven of the seventy two parameters

recorded by the flight data recorder. A line counter is added to each set of parameters

output by the transcription device. Table 1 lists the Lotus 1-2-3 output format of the

data transcription device with the minimum and maximum values for each parameter

[Ref. 8]. Table 2 lists the fifty discrete parameters recorded. Table 3 lists the sample

rate and unit of measurement for each parameter.

TABLE 1 Lotus 1-2-3 OUTPUT FORMAT

FIELD DESCRIPTION FORMAT MIN VALUE MAX VALUE
I Line Counter 16 0 +999999
2 Combined Time F9.3 0.000 +99999.999
3 Pitch Attitude F6.1 -82.0 +82.0
4 Roll Attitude F6.1 -180.0 +180.0
5 Yaw Attitude F5.1 0.0 +360.0
6 Longitudinal Stick F5.1 -5.0 + 105.0
7 Latitudinal Stick F5.1 -5.0 + 105.0
8 Pedal Position F5.1 -5.0 +105.0
9 Collective Stick FS.1 -5.0 +105.0

10 Airspeed F5.1 0.0 +180.0
11 Altitude I5 -1000 +20000
12 Altitude Rate 15 -6000 +6000
13 Engine#I Torque F5.l 0.0 +142.0
14 Engine #2 Torque F5.1 0.0 +142.00
15 Rotor RPM F5.1 0.0 +130.0
16 Stabilator Position F5.1 -10.0 +40.0

17-66 Discretes I 1 0 +1
67 Tail Number 13 0 +999
68 Check Word Error I 1 0 +1

6

TABLE 2 DISCRETE FIELDS

FIELD DESCRIPTION

17 Master Warning
18 Fire Master Warning
19 Stabilator
20 Stabilator Auto Reset
21 Stabilator Slew Up
22 Stabilator Slew Down
23 SAS Off
24 #1 Generator Caution
25 #2 Generator Caution
26 #1 Converter Caution
27 #2 Converter Caution
28 AC Essential Bus Caution
29 DC Essential Bus Caution
30 #1 Primary Servo Caution
31 #2 Primary Servo Caution
32 #1 Hydraulic Pump Caution
33 #2 Hydraulic Pump Caution
34 Tail Rotor Quadrant Control
35 #1 Tail Rotor Servo Caution
36 #2 Tail Rotor Servo Caution
37 Boost Servo Off Caution
38 Trim Failure
39 FPS
40 APU Failure
41 APU On
42 APU Generator On
43 #1 Reservoir
44 #2 Reservoir
45 Backup Reservoir
46 Backup Pump On
47 #1 Engine Out
48 #2 Engine Out
49 Low Rotor RPM
50 Drag Beam
51 #1 Tail Rotor Shutoff Valve
52 #2 Tail Rotor Shutoff Valve
53 Boost Shut Off
54 SAS/Pitch Boost Shut Off
55 Pitch Trim System
56 Pilot Assist Shut Off
57 #1 Primary Servo Shut Off
58 #2 Primary Servo Shut Off
59 FPS Switch
60 Primary 1st Stage Servo Switch
61 Primary 2nd Stage Servo Switch
62 SAS #1 Switch
63 SAS #2 Switch
64 Trim Switch
65 Tail Rotor Servo Switch
66 Pitch Trim Turnoff Valve

7

TABLE 3 PARAMETER SAMPLE RATES
AND UNITS OF MEASUREMENT

FIELD DESCRIPTION SAMPLE RATE UNIT OF MEASUREMENT
1 Line Counter 8/sec ------------
2 Combined Time 8/sec Seconds
3 Pitch Attitude 8/sec Degrees
4 Roll Attitude 8/sec Degrees
5 Yaw Attitude 8/sec Degrees
6 Longitudinal Stick 4/sec Percent
7 Latitudinal Stick 4/sec Percent
8 Pedal Position 4/sec Percent
9 Collective Stick 4/sec Percent

10 Airspeed 2/sec Knots
11 Altitude 2/sec Feet
12 Altitude Rate 2/sec Feet/Minute
13 Engine # 1 Torque 2/sec Percent
14 Engine #2 Torque 2/sec Percent
15 Rotor RPM 2/sec Percent
16 Stabilator Position 1/sec Degrees

17-66 Discretes 1/sec On/Off
67 Tail Number 1/sec ------------
68 Check Word Error 1/sec True/False

B. DATA INACCURACIES

Inaccurate data is inevitable in most flight data files. The Commander of the

United States Army Safety Center has directed that no modifications be made to the

data obtained from flight recorders. As such, unusual graphics are occasionally

displayed by the CAST program. By analyzing the data displayed with the graphics,

it is possible to determine when inaccurate data is being used to produce the graphics.

The airspeed indicator, altimeter, and vertical speed indicator all operate off of

the pitot-static system of an aircraft [Ref. 5:p. 2-17 - 2-31]. The airspeed indicator

in many cases is inaccurate below thirty knots of forward airspeed and on most

aircraft can not indicate sideward or rearward flight speeds. Most flight speeds below

thirty knots forward airspeed will be recorded as zero airspeed by the flight data

recorder. The altimeter and vertical speed indicators are subject to atmospheric

I I ! . I8

pressure errors and can also be affected by a helicopter's rotor wash. Instrument lag

is also prevalent in the vertical speed indicator unless an instantaneous vertical

speed indicator is installed in the aircraft.

C. CONVERSION OF FLIGHT DATA FILES

Several Lotus 1-2-3 format flight data files were obtained on floppy disk from the

United States Army Safety Center. These data files were converted to a new format

which is used by the CAST program. A utility program was written in the C

programming language to accomplish the data conversion. This program can be found

in Appendix B.

The CAST format data files are more readable than the Lotus 1-2-3 format data

files. The Lotus 1-2-3 format files have no spacing between parameter fields. The

CAST format data files provide spacing between parameter fields to increase their

readability.

The fifty discrete parameters are written as a string of ones and zeros in the

Lotus 1-2-3 format data files. The fifty discrete values are converted into two

unsigned integers in the CAST format data files. These integers serve as bit fields to

determine which discrete parameters are active (on). Twenty five bits in each integer

are used for discrete parameters with seven bits unused in each.

9

II. SOFTWARE BASIS FOR CAST

The CAST system is based upon the Moving Platform Simulator (MPS) which

was completed in November 1988 by tesis students working in the Graphics and

Video Laboratory at the Naval Postgraduate School. The MPS system consolidated

and upgraded vehicle simulators which had been developed by previous thesis

students.

A. FOG-M SIMULATOR

The initial development of a vehicle simulation system was completed in June

1987. This system was a Fiber Optically Guided-Missile simulator which was

developed for the United States Army Combat Developments Experimentation

Center at Fort Ord, California [Ref. 10:p. 11-12]. This system was run on a Silicon

Graphics, Inc. IRIS 3120 graphics workstation. The system allowed an operator to fly

the FOG-M over three dimensional terrain generated from digital terrain elevation

data of the Fort Hunter-Liggett, California area. Vehicles traversed the terrain on

preset courses. The operator was able to target, track, and destroy these vehicles

with the FOG-M.

B. VEH SIMULATOR

The FOG-M simulator was upgraded to the Vehicle (VEH) simulator. This

work was completed in December 1987 [Ref ll:p. 8]. Like the FOG-M simulator,

VEH was run on the IRIS 3120 graphics workstation. The VEH simulator improved

the user interface of the FOG-M system. In VEH, the FOG-M control panel was

simulated so that the operator could control the missile's speed, heading, altitude,

10

and camera position. A driver's view was also provided for the ground vehicles. A

more efficient terrain drawing algorithm, based upon the vehicle driver's or missile

camera's field of view was also implemented in VEH [Ref. 11 :p. 9-101.

C. VEH II SIMULATOR

The VEH simulator was then modified to be run on more powerful Silicon

Graphics, Inc. workstations. VEH was first modified to be run on the IRIS 4D/70G

graphics workstation. This modification took advantage of the higher level graphics

capabilities of the 4D/70G. Popup menus were implemented and the system was

operated under the MEX window management system [Ref. 7:p. 5].

Further modifications were made to VEH II to allow it to be run on the IRIS

4D/70GT graphics workstation. The system was now operated under the 4Sight

window management system [Ref. 7:p. 5].

D. MOVING PLATFORM SIMULATOR (MPS)

MPS provided further modifications to VEH II to utilize the built-in graphics

hardware of the IRIS 4D/70GT. MPS added capabilities such as realistic, variable

light intensities based upon the month and time of day, Z-buffering for hidden surface

removal, and RGB color mode. An improved terrain drawing algorithm was developed

which uses distance attenuation of the terrain surface to improve the simulator

performance. A broadcast network capability was added to allow communications

between multiple simulators over an Ethernet link. [Ref. 7:p. 8]

I1

IV. MODIFICATION OF MPS FOR THE IMPLEMENTATION

OF CAST

The MPS program provided a good basis for the development of CAST. The

three dimensional terrain and two dimensional map drawing modules of MPS were

suitable for usage in a crash analysis simulator. However, extensive modifications

had to be made to MPS for the implementation of CAST. Many of the operations

available in MPS were not appropriate for aircraft crash analysis. The coding for

these features was removed from MPS. Many new software modules were added to

MPS to provide the capabilities required for crash analysis. The resulting CAST

program is a scaled-down version of MPS with crash analysis specific capabilities.

A. DELETION OF CODE FROM MPS

Being a moving platform simulator, MPS can display a variety of ground and

airborne platforms. The platforms displayed by MPS include:

1. Open and Covered Jeeps

2. Trucks

3. Tanks

4. Fiber Optically Guided Missiles

Since Army aviation accidents very rarely involve ground vehicles, it was

decided to remove all ground vehicles for the CAST simulator. The MPS program

modules which generated the ground vehicles were deleted. Modules which provided

the user interface for the control of the ground vehicles and which calculated the

vehicle driver's look position were also removed.

12

The FOG-M also was not needed for the CAST system. The display routines

for the FOG-M were deleted and were replaced with routines to draw a helicopter.

The program modules which provided the FOG-M's tracking capability of ground

vehicles were removed.

CAST is intended to be utilized as a stand-alone crash investigation tool.

Therefore, the MPS networking capability was deemed unnecessary for CAST. The

ability to simultaneously simulate the flights of multiple aircraft and to interactively

change the cockpit of reference for the display of the aircraft was found to be

satisfactory for a proper analysis of an aircraft mishap. Thus, the networking code

was removed from MPS for the CAST implementation.

Table 4 lists the MPS modules which were deleted for the CAST implementation.

TABLE 4 MPS MODULES DELETED IN THE CAST IMPLMENTATION

.C MODULES DELETED
add network veh.c checkforpackets.c display indbox.c
display-slider.c display-tracked-message.c dochange-speed.c
dodriving-menu.c do-the-defaults.c drawflane.c
drawintank.c drawjeep.c drawopenjeep.c
drawroller.c drawtank.c drawtire.c
drawtrack.c drawtruck.c drawwreck.c
eventdriving.c flamenormals.c handletracking.c
initveh.c intanknormals.c jeepnormals.c
limit_cursorpick.c network.c network receive.c
openjeepnormals.c resettltf.c rollemormals.c
semaphore.c setcontrols.c slowturn.c
tanknormals.c tirenormals.c totnumground-veh.,c
tracking-check.c tracknormals.c trucknormals.c
update look-pos.c update net-veh-pos.c

.H MODULES DELETED
Flamedata.h Intankdata.h Jeepdata.h
Network.h Openjeepdata.h Rollerdata.h
Tankdata.h Tiredata.h Trackdata.h
Truckdata.h

13

B. MODIFICATION OF DATA STRUCTURES

The MPS program utilizes a record structure to maintain information on each

platform being displayed. The records are stored as a linked list. Networking,

tracking, course, speed, translation, rotation, terrain position, and screen location data

are maintained for each platform. Figure 1 shows the MPS record structure used to

maintain this data.

typedef struct vehicle {
int netid; /* Platform ID number for networking purposes */
short pick-id; /* Pick ID number for targeting purposes */
short t; /* Platform type */
Coord x; /* X translation */
Coord y; /* Y translation */
Coord z; /* Z translation */
short tilt; /* X rotation */
float ang; /* Y rotation */
short inc; /* Z rotation */
short gridx; /* X grid index to draw platform in */
short gridz; /* Z grid index to draw platform in */
float vel; /* Velocity in meters per second */
float alt; /* Altitude if it is a FOG-M missile */
float cse; /* Compass course */
float sx; /* X screen coord for icon on contour map */
float sy; /* Y screen coord for icon on contour map */
Boolean track-flag; /* If type is a ground platform then */

/* FALSE = not being tracked */
/* TRi IE = is being tracked
/* If type is a FOG-M missile */
/* FALSE = not currently tracking */
/* TRUE = is tracking */

struct vehicle *track; /* If type is a ground platform then */
/* It is a pointer to the FOG-M, otherwise */
/* It points to the ground platform */

struct vehicle *next; /* Next node in the list */
Vehicle;

Figure 1 MPS Vehicle Record Structure

14

The MPS Vehicle record structure was modified for CAST by first eliminating

fields which were utilized for networking and tracking. Fields were then added to

store the pilot's viewing directions and the tail number of the aircraft. Pointer fields

were added to access the aircraft's flight recorder data. Fields were added to store

the Universal Transverse Mercator (UTM) grid coordinates of the aircraft as it

traverses over the terrain. The UTM grid coordinate fields are not used in the ctrrent

version of CAST, but they were added for future development of the system. Figure 2

shows the CAST record structure for maintaining data on each aircraft.

typedef struct vehicle {
int tailnbr, /* Aircraft tail number */
short t; /* Platform type */
Coord x: /* X translation */
Coord y; /* Y translation */
Coord z; /* Z translation */
float roll; /* X rotation (in degrees) */
float ang; /* Y rotation (in radians) */
float pitch; /* Z rotation (in degrees) */
short gridx; /* X grid index to draw platform in */
short gridz; /* Z grid index to draw platform in 7
float vel; /* Velocity in meters per second */
float alt; /* Altitude (in feet) */
float n_hi; /* UTM northing high byte (future use) *1
float nlo: /* UTM northing low byte (future use) */
float ehi: /* UTM easting high byte (future use) */
float elo: /* UTM easting low byte (future use) */
float cse: /* Compass course (in degrees) */
float lookaz: /* Viewer's look dir side to side (deg's) */
float lookel. /* Viewer's look dir up and down (deg's) */
float sx; /* X screen coord for icon on contour map */
float sv: /* Y screen coord for icon on contour map */
Boolean end of fit data; /* Indicates all flight data read */

Fltdata rec *fit_data; /* Pointer to flight data record list */
Fit data rec *curr -fit data rec: /* Current record being used */
struct vehicle *next. /* Next node in the vehicle list */

Vehicle:

Figure 2 CAST Vehicle Record Structure

15

A record structure was added to the CAST program to store the flight recorder

data. These records are linked together to form a doubly linked list. Both forward and

backward links were required to implement an option which allows the user to

manually step forward and backward through the flight data. Figure 3 shows the

record structure for the flight data.

typedef struct fltdata-rec {
int frequency; /* freq rate for data record (8/4/2/1) */
int frame-no; /* Frame (output line) counter */
float time; /* Combined time */
float pitch; /* Pitch attitude (degrees) */
float roll; /* Roll attitude (degrees) */
float yaw; /* Yaw attitude (degrees heading) */
float long_cvclic; /* Longitudinal stick (%) */
float lat_cyclic; /* Latitudinal stick (%) */
float pedals; /* Pedal position (%) */
float collective; /* Collective position (%) */
float airspeed; /* Airspeed (knots) */
int altitude; /* Altitude (feet MSL) *1
float salt; /* Smoothed altitude (feet MSL) */
int altrate; /* Change in altitude (feet/minute) */
float engl-torque; /* Engine #1 torque (%) */
float eng2_torque; /* Engine #2 torque (%) *1
float rotor-rpm; /* Main rotor rpm (%) */
float stab_pos; /* Stabilator position (degrees) */

unsigned int discretel; /* First 25 discretes (1/0) */
unsigned int discrete2; /* Second 25 discretes (1/0) */
struct fit_data rec *next; /* Next flight data record */
struct fltdatarec *prev; /* Previous flight data record */

Flt_data rec;

Figure 3 Flight Data Record Structure

When an aircraft is added to the list of vehicles to display, the flight recorder

data is read from a data file specified by the user. Each frame of flight recorder data is

stored in a separate flight data record. Because flight parameters are recorded at

varying intervals, the utilization rate for the record fields varies in a cyclic pattern.

16

The frequency field of the flight data record indicates which parameters are stored in

the record. The decoding for the frequency field is shown in Table 5.

TABLE 5 PARAMETER FREQUENCY DECODING

FREQUENCY # FLIGHT DATA DESCRIPTION OF
VALUE FIELDS USED PARAMETERS RECORDED

8 5 Parameters recorded at a rate
of eight samples per second
(5 total).

4 9 Parameters recorded at a rate
of eight samples per second
(5 total) plus the parameters
recorded at a rate of four
samples per second (4 total).

2 15 Parameters recorded at a rate
of eight samples per second
(5 total) plus the parameters
recorded at a rate of four
samples per second (4 total)
plus the paratemters recorded
at a rate of two samples per
second (6 total).

18 All parameters are recorded as
described above plus selected
ioarameters recorded at a

e of one sample per second
Lotal). This includes the

stabilator position and the
fifty discrete parameters
combined as unsigned integers.

One linked list is maintained which contains all of the Vehicle records which

represent the aircraft being displayed. Each Vehicle record points to its own linked

list of Fit_datarec records which contain the flight recorder data for the aircraft. The

relationship between the Vehicle and Fit-data rec linked lists is shown in Figure 4.

17

Vehicle 1 Vehicle n

next_______ next

_t fit data

Fit-data-rec 1 Fit-data-rec 1

frequency_____ frequency

prey prey
next next

Fit_data_rec 2 Fit-data-rec 2

freqencyfrequency

____________ prey

next next

Fit-data-rec n Fit data-rec n

frequency Ifrequency

prey prey

next next

Figure 4 Vehicle and Fit-data rec Linked Lists

18

C. GRAPHICS WINDOW LAYOUT MODIFICATIONS

The MPS system operates under the 4Sight window management system. Four

graphics windows are utilized in MPS for the display of data and the animation of the

moving platforms. The windows are arranged so that they appear as a single window

on the display screen. Figure 5 depicts the layout of the windows in MPS. The MPS

windows are utilized as follows:

1. MAPWIN - This is a dual purpose window used to display both two and
three dimensional graphics. A two dimensional contour map produced from the
digital terrain elevation data is displayed which enables the user to select a
10km X 10km area of operation and to position platforms within the area of
operation. The three dimensional animation of the platforms moving throughout
the area of operation is also displayed in this window.

2. NAVWIN - This window is used to display a two dimensional contour map of
the area of operation. Indicated on this map are the positions of the platforms
within the area of operation and the direction of travel and field of view of the
platform currently under the operator's control.

3. INDWIN - This window displays mouse and dial box controls utilized for the
user interface with the system. There are two control displays; one for the
control of ground platforms and one for the control of a FOG-M. Numerical data
is displayed in this window for the platform under operator control. The speed
and heading of the platform is displayed as is the altitude if the platform is a
FOG-M. The operator's viewing direction and field of view data are also
displayed. Target distance data is displayed for a FOG-M which is tracking a
ground target.

4. MENUWIN - This window is used to provide performance, sunlight, and
networking data to the user. The number of polygons currently drawn in the
MAPWIN and the current and average number of frames per second being
displayed in the MAPWIN are shown to provide performance statistics to the
user. The user selected month and time of day are displayed along with sunrise,
midday, and sunset data for the month selected. A message is also displayed
which indicates whether networking is enabled or disabled.

The 4Sight window management system allows resizing of windows. The MPS

system takes advantage of this capability by providing a user menu option to resize

the windows. All windows are resized when this option is selected so that they

maintain the appearance of a single window. The resize option places a lower bound

19

on the overall combined size of the four windows (600 X 480 pixels) so that the user

can not accidentally resize the windows too small for use.

MENUWIN

MAPWIN NAVWIN

INDWIN

Figure 5 MPS Graphics Window Layout

All of the windows used in MPS were appropriate for the CAST system,

however additional windows were needed to graphically display the flight recorder

data. Two new windows were added in the CAST system. The MAPWIN was

decreased in size, but still retained its square dimensions. One of the new windows

20

was placed above the MAPWIN and one to the right side of the MAPWIN. Figure 6

depicts the layout of the graphics windows in the CAST system.

PANELWIN MENUWIN

MAPWIN DISPWIN NAVWIN

INDWIIN

Figure 6 CAST Graphics Window Layout

The windows in the CAST system have the following utilizations:

1. MAPWIN - This window has the same usage in the CAST system as in the
MPS system.

2. NAVWIN - This window also provides the same graphical display in the
CAST system as in the MPS system.

21

3. INDWIN - As in the MPS system, this window displays the mouse and dial
box controls for the user interface. Unlike MPS, there is only one control display
in CAST. Selected flight data is also displayed in this window. Section F of this
chapter contains a detailed description of the user interface and data displayed in
this window.

4. MENUWIN - This window provides essentially the same information to the
user in the CAST system as in the MPS system. Since the networking
capability has been removed from CAST, the networking message displayed in
this window in MPS has been replaced with the tail number of the aircraft
currently under operator control in CAST.

5. PANELWIN - This window is utilized to display the status of the fifty
discrete parameters recorded in the flight data. Five rows of ten rectangular
boxes are displayed in the window. Each box is labeled with a discrete
parameter name. When a discrete parameter is inactive (off), the box for the
parameter is displayed in the window background color (cyan). When a
parameter becomes active (on), the corresponding parameter box is colored
yellow. The overlay planes of this window are use to provide an input area for
entering a flight recorder data file name when an aircraft is being added for
display.

6. DISPWIN - This window is used to graphically display the positions of the
aircraft's cyclic, collective, and anti-torque pedal controls as recorded in the flight
data. The longitudinal and latitudinal cyclic stick percentages and the degrees of
pitch and roll of the aircraft are displayed under the cyclic graphic. The percent of
collective and vertical speed data are displayed under the collective graphic and
the percent of left pedal is displayed under the pedals graphic. The stabilator
position is also graphically displayed as are the percent of rotor rpm and the
percent of power utilization for the aircraft engines.

Figure 7 shows the CAST system windows with typical graphics displayed.

The CAST system retains the menu option provided in MPS for the resizing of

the windows. The resizing procedure is the same as in MPS with all windows being

resized together to maintain the appearance of a single window. The same lower

bound is placed on the size of the combined windows as is used in MPS.

22

Figure 7 CAST Graphics Windows

23

D. MODELING AND DISPLAY OF A HELICOPTER

Since the only airborne platform modeled in MPS is a missile, a helicopter model

was needed for the development of CAST. For the initial implementation of CAST it

was unimportant as to which helicopter was modeled. What was important was to

display a realistic representation of a helicopter with a minimum number of polygons.

*: the number of pol, ons drawn directly affects system performance, the goal was

.nodel a helicopter wiaq 200 or less polygons.

An AH- 1 (COBRA) was chosen as the helicopter to model for the initial CAST

implementation. Thbis helicopter was chosen because the angular shape of the

airframe was far easier to model than the rounded airframes of other helicopters like

the UH-60 BLACK HAWK. Cylindical components of the COBRA such as the skid

tubes, engine exhaust pipe, and infrared suppressor were modeled as four or eight-

sided cylinders. The COBRA was modeled with a total of 185 polygons which

provided enough detail for a very realistic looking helicopter and met the goal of 200 or

less polygons. Figure 8 shows the COBRA as it is displayed by the CAST system.

1. MPS Platform Display Programs

Each polygon used to contsruct a platform in the MPS system is stored in a

two dimensional array of floating point numbers. The first dimension of the array

corresponds to the number of vertices in the polygon. The second dimension is

always three for the X, Y, and Z world coordinates of each vertex. A vector of three

floating point numbers is associated with each polygon. The vector is used to store

the normal of the polygon. The normal is utilized with the lighting routines during the

display of the platform.

24

A r W; ~ Sft,** **OWA mlu fal fm* 0 0 0 SOW 4 *NV

w

-1'e -,

Figure 8 Display of the COBRA Helicopter Model

25

The MPS platform display routines use a standard C-code sequence to draw

the polygons. Material color characteristics are first bound to the polygon with the

Imbind command. Next, the polygon normal is specified for lighting calculations with

, e n3f command. The vertices of the polygon are then input to the graphics pipeline

with the v3f command. A separate v3f command is issued for each vertex. The v3f

commands are bracketed by a bgnpolygon and an endpolygon command. Figure 9

a representative block of code used to draw a jeep polygon in the MPS system.

/* left cab */

lmbind(MATERIAL,JEEPOUT);

n3f(pnjeep2);

bgnpolygono;

v3f(pjeep2[0]);

v3f(pjeep2[1]);

v3f(pjeep2[2]);

v3f(pjeep2[3]);

endpolygono;

Figure 9 MPS Polygon Drawing Code

A separate block of code similar to that in Figure 9 is used in the MPS

platform drawing routines for each polygon drawn. This makes the drawing routines

rather lengthy and is wasteful of memory space. As an example, the MPS routines

for drawing a sixty eight polygon truck contain 750 lines of C-code and occupy 17745

bytes of memory. More efficient drawing routines were developed for the CAST

system. The routines which draw the 185 polygon COBRA helicopter contain only

350 lines of code and occupy only 7236 bytes of memory.

26

2. CAST Helicopter Display Programs

A different array structure was implemented in the CAST software to store

the helicopter polygons than was used in MPS to store platform polygons. The

helicopter polygons are grouped by number of vertices and color. A three dimensional

array structure of floating point numbers is utilized to store each group of polygons.

The first array dimension indicates the number of polygons in the group. The second

dimension of the array indicates the number of vertices in each polygon within the

group. The last dimension is always three for the X, Y, and Z world coordinates of

each vertex. As an example, the array p3gcobra[16][3][3] is an array which stores

sixteen, three-vertex green polygons for the body of the COBRA helicopter. The

normals for each group of polygons are stored in a two dimensional array structure.

The normal array which corresponds to the p3gcobra array is pn3gcobra[16][3].

A loop structure is used in CAST to draw each group of polygons. A Imbind

command is issued prior to a loop to set the material color characteristics for the

group of polygons. A single n3f and bngpolygon-v3f-endpolygon sequence is

contained within a loop. Figure 10 shows a typical CAST drawing loop. This method

of drawing polygons is much more efficient in terms of memory used.

Four separate routines are used in CAST to draw the COBRA helicopter.

The main drawing routine is drawcobra. This routine draws the body of the

COBRA and calls drawtailrotor, draw mainrotor, and drawtailpipe to draw

the associated components. Accumulation rotation matrices are maintained for the

main and tail rotors to provide turning rotor animation. The body of the COBRA is

drawn with the center of gravity point (located in line with the main rotor shaft) at

the origin. The nose of the helicopter faces along the positive X-axis. The main rotor,

27

tail rotor, and engine tail pipe are all defined about the origin and are then translated

to the proper position on the body of the COBRA. The COBRA helicopter is defined

in a world coordinate system which represents meters. The C programs which draw

the COBRA helicopter are included in Appendix B.

/* draw the four-vertex, green polygons for the COBRA body */

lmbind(MATERIAL,COBRABODY);

for (i = 0; i < 90; i++)
(

n3f(pn4gcobra[i]);

bgnpolygono;

v3f(p4gcobra[i] [0]);

v3f(p4gcobra[i] [1]);

v3f(p4gcobrai][;

v3f(p4gcobra[i] [3]);

endpolygono;
}

Figure 10 CAST Polygon Drawing Code

In developing the CAST software, the COBRA helicopter was first added to

the MPS system by following the procedure outlined in the Fichten and Jennings

thesis [Ref. 7:p. 108-110]. At this point, the helicopter acted as a FOG-M. The

MPS menu, user interface, and vehicle position update coding was then modified so

that the flight of the helicopter could be displayed and analyzed.

28

E. USER POPUP MENU INTERFACE MODIFICATIONS

The basic menu structure of MPS was utilized while developing the CAST

system. Several of the menus were removed because there are no ground vehicles in

CAST. Similar menus were consolidated and three new menus were added to

provide options not available in MPS.

1. Popup Menus Deleted

A total of ten popup menus were deleted from the MPS program during the

development of CAST. When a platform is added for display in MPS, the user must

provide an initial speed and direction for the platform. This is done with popup

menus. The initial speed and direction for a helicopter added for display in CAST are

determined from the helicopter's flight data file. This allowed the removal of the

GROUND SPEED, FLYING SPEED, and DIRECTION popup menus.

Since ground vehicles were removed for the CAST implementation, the

menus to control the operation of ground vehicles (OPERATE DRIVE) and to add a

default convoy of vehicles (DEFAULTMENU) were deleted. The speed of an

aircraft displayed in CAST is determined from its flight data. The user can not control

the aircraft speed. Therefore, the CHANGESPEEDMENU popup was removed.

MPS provides an ADVANCED menu which allows the user to select

options which demonstrate various graphics capabilities of the IRIS work-tation.

This feature is not needed for a crash analysis simulator, so the ADVANCED menu

was eliminated.

The MPS system allows the user to temporarily detach from operation while

flying a FOG-M and store the state of the system in a data file. The user can then

29

later resume operation at the same state as when he detached from operation. To

implement this option, MPS uses three separate menus (OPERATEFLY_ONE,

OPERATEFLYTWO, and OPERATEFLYTHREE). The detach capability was

not necessary for CAST and was removed. This allowed the deletion of the

OPERATEFLYONE and OPERATEFLYTHREE popup menus. The

OPERATEFLY_TWO popup menu was retained and renamed OPERATEFLY.

Two terrain selection menus are used in MPS. If the networking capability is

not activated or is activated and only one process is active, an area of terrain or new

terrain database can be selected. If networking is activated and more than one

process is active, terrain and data base selection is not allowed. The

SELECTAREAONE popup menu allows terrain and database selection while the

SELECTAREATWO popup menu does not. Networking was removed for the

CAST implementation so the SELECTAREATWO popup menu was also

removed. The SELECTAREAONE menu was kept and renamed SELECTAREA.

2. Popup Menu Options Deleted

The MPS popup menus provide several options which can be se~ected, but

which do nothing. These options are indicated by being displayed in lower case

letters in the menus. Options which have an effect on the system are displayed in

upper case letters in the menus. Although an unuseable option serves as a reminder

that the operation is not currently available, it was decided that such an option

violates good user interface principles. The user should only be presented with

options which affect the system. Al! menu options which have no effect on the

system were therefore removed.

30

The options to add individual ground vehicles and missiles were removed

from the popup menus as well as the options to add a default set of platforms and to

save the platforms in a data file. The missile tracking option, resize option, and

change speed options were deleted from the OPERATEFLY popup menu.

3. Popup Menus Added

Three popup menus were added for the CAST implementation. These menus

are selected as roll-off-the-side menus.

A frame delay menu (DELAY) was added to allow the user to control the

rate at which the frames of flight data are animated. The user can select a one, two,

or five second delay between frames to aid in analyzing the data displayed. The user

can also select a single step option to manually step forward and backward one frame

at a time through the flight data. This allows the user to study the graphical display

of a flight data frame for an indefinite period of time. The user can return to the normal

frame display rate (no delay between frames) at any time. The DELAY popup menu

can be selected from the MAIN-ONE, MAINTWO, MAINTHREE, MAIN-FOUR,

or OPERATE-FLY popup menus.

A menu was added (EYE) to provide variable placement of the eyepoint for

display of the aircraft over the three dimensional terrain. The user can select an

eyepoint inside the cockpit of the aircraft or outside of the aircraft. Within the cockpit,

the user can select either the pilot station or the copilot station for the eyepoint. This

allows the user to watch the flight from the same perspectives as the pilots who were

involved in a mishap. The user can also place the eyepoint ouside of the aircraft and

watch the aircraft as it flies over the terrain. This is especially useful when analyzing

31

midair collisions. Section F of this chapter provides details of the control of the

eyepoint when it is placed outside of the aircraft. The EYE popup menu is selectable

from the OPERATEFLY menu.

An altitude option menu (ALTITUDE) was added which provides for three

means of displaying the aircraft above the ground. If the terrain database is not

available for the area in which the mishap occurred, any terrain database can be used

with the constant altitude option selected. This displays the aircraft at a constant

altitude of 200 meters above ground level. If the proper terrain database is available,

the user can display the aircraft utilizing the actual altitude data recorded in the flight

data file. This can result in an unstable display because of large variances in altitude

values between frames. A smoothed altitude option is available to provide a more

stable display of the aiecraft. Section I of this chapter discusses altitude smoothing.

The ALTITUDE menu can be selected from the OPERATEFLY popup menu.

F. USER CONTROL INTERFACE MODIFICATIONS

The user control interface for both the MPS and CAST system is through the

mouse and dial box. The control usage was extensively modified during the

development of CAST.

1. Mouse Control Modifications

The mouse control functions for the MPS system are depicted in Figure 11.

The controls have the following utilizations:

1. Vertical mouse movement - This controls the panning (side to side
movement) of the camera in a FOG-M which is not actively tracking a ground
target.

32

Z Z M
0 0 E
o 0 N
M M U

U N
T

TILT

PAN

Figure I11 MPS Mouse Controls

33

2. Horizontal mouse movement - This controls the tilt angle (up and down
movement) of the camera in a FOG-M which is not actively tracking a ground
target.

3. Left mouse button - This i.; used to increase the field of view as seen from a
driven platform or the FOG-N ! cantera.

4. Middle mouse button - This control decreases the field of view as seen from a
driven platfoirm or the FOG-M camera.

5. Right mouse button - This button is used to display popup menus on the

screen.

Since the FOG-M was not to be used in CAST, the horizontal and vertical

mouse movement control interfaces were disabled. A variable field of view capabilty

was to be included in the CAST system. It was decided to control the field of view

with a dial rather than with the mouse. This freed the left and middle mouse buttons

for other uses. The control interfaces provided by the mouse in the CAST system

vary depending upon whether the user is operating under the manual frame step mode

or not. The control functions of the mouse in CAST are depicted in Figure 12. These

controls are utilized as follows:

1. Left mouse button - When operating under the manual frame step mode, this
button displays the previous frame of flight data.

2. Middle mouse button - When operating under the manual frame step mode,
this button displays the next frame of flight data.

3. Right mouse button - This button is used to display popup menus uj. the
screen.

2. Dial Box Control Modifications

The dial box control functions in MPS vary depending upon the type of vehicle

being operated by the user. The dial functions provided when a ground vehicle is

being operated are shown in Figure 13. Figure 14 shows the dial functions provided

when the operator is controling a missile.

34

B F M
A 0 E
C R N
K W U
W A
R R
D D

Figure 12 CAST Mouse Controls

35

D1AL 4 DIAL 5

HOUR MONTH

DIAL 2 tAL3

SPEED TILT

9DIAL 0.
DIAL. I

COURSE VIEWING DIR

Figure 13 MPS Dial Box Controls for Driving a Vehicle

36

DIAL 4 DIAL 5

HOUR MONTH

DIALt 2

SPEED

DIAL 0 t)IAE 1

COURSE ALTITUDE

Figure 14 MPS Dial Box Controls for Flying a Missile

37

In the MPS system, the dials are utilized for:

1. DIAL 0 - When operating a ground platform, this dial controls the vehicle's
course. When operating a missile and not tracking a ground platform, the dial
controls the missile's course. When operating a missile that is tracking a ground
platform, the dial is not used.

2. DIAL 1 - When operating a ground platform, this dial controls the viewing
direction of the vehicle driver. When operating a missile and not tracking, the
dial controls the missile's altitude. When operating a missile that is tracking a
ground platform, the dial is not used.

3. DIAL 2 - This dial is used to control the speed of all platforms.

4. DIAL 3 - When operating a ground platform, this dial controls the viewing
elevation of the vehicle driver. The dial is not used when operating a missile.

5. DIAL 4 - This dial is used to control the time of day for lighting of the three
dimensional scene for all platforms.

6. DIAL 5 - This dial is used to control the month of the year for lighting of the
three dimensional scene for all platforms.

7. DIAL 6 - This dial is not used.

8. DIAL 7 - This dial is not used.

Since the aircraft displayed in the CAST system were to be flown from flight

data files, speed, course, and altitude controls were not needed. Controls were

needed to vary the viewing direction, field of view, and the month and time of day for

lighting purposes. The dial controls available to the user as implemented in CAST

vary depending upon whether the eyepoint is placed inside an aircraft or outside of an

aircraft. Figure 15 shows the dial box controls when the eyepoint is inside an

aircraft. Figure 16 shows the controls when the eyepoint is moved outside of an

aircraft.

38

DIAL 6 DIAL 7

HOUR MONTH

DIAL 4 DIALS5

L-R U-D

DIfAL 2 t~kAL3

DIAL 0 DIAL I

FOV

Figure 15 CAST Dial Box Controls With Eyepoint Inside Aircraft

39

D1AL 6 AL

HOUR MONTH

DA4 DIAL 5

DIAL 2 AL3

x Y

DIAL 0 DIAL I

Z FOV

Figure 16 CAST Dial Box Controls With Eyepoint Outside Aircraft

40

The dial box controls provide the following functions in CAST:

1. DIAL 0 - When the eyepoint is outside an aircraft, this dial moves the
eyepoint along the Z-axis of the aircraft world coordinate system. The eyepoint
can be placed anywhere within positive and negative fifty meters of the center of
the aircrdaft along he Z-axis. When the eyepoint is inside an aircraft, this dial is
not used.

2. DIAL 1 - Regardless of where the eyepoint is located, this dial controls the
field of view. The field of view can be varied from ten degrees to one hundred
degrees.

3. DIAL 2 - When the eyepoint is outside an aircraft, this dial moves the
eyepoint along the X-axis of the aircraft world coordinate system. The eyepoint
can be placed anywhere within positive and negative fifty meters from the center
of the aircraft along the X-axis. When the eyepoint is inside an aircraft, this dial
is not used.

4. DIAL 3 - When the eyepoint is outside an aircraft, this dial moves the
eyepoint along the Y-axis of the aircraft world coordinate system. The eyepoint
can be placed anywhere within positive and negative fifty meters from the center
of the aircraft along the Y-axis. When the eyepoint is inside an aircraft, this dial
is not used.

5. DIAL 4 - When the eyepoint is inside an aircraft, this dial changes the lateral
viewing position as seen by a pilot. The range for the lateral viewing position is
plus and minus one hundred twenty degrees relative to the nose of the aircraft.
When the eyepoint is outside of an aircraft, this dial is not used.

6. DIAL 5 - When the eyepoint is inside an aircraft, this dial changes a pilot's
viewing elevation. The range for the viewing elevation is plus and minus ninety
degrees relative to the centerline of the aircraft. When the eyepoint is outside of
an aircraft, this dial is not used.

7. DIAL 6 - This dial is used in all cases to control the time of day for lighting of
the three dimensional display.

8. DIAL 7 - This dial is used in all cases to control the month of the year for
lighting of the three dimensional display.

Figure 17 shows the graphics displayed with the eyepoint inside the COBRA

helicopter. The eyepoint is placed at the pilot's station with the pilot looking to his

left. Figure 18 shows the graphics displayed with the eyepoint outside an aircraft.

Here, a flight of three COBRA helicopters is being viewed.

41

-fAet* I'- t t

Figure 17 View From Inside a COBRA Helicopter

42

Figure 18 View of Three COBRA Helicopters in Formation Flight

43

3. Graphics Displayed In The INDWIN Graphics Window

A graphical representation of the mouse and dial box are displayed in the

INDWIN graphics window. The mouse buttons and dials are labeled to indicate

,hich controls are currently active. Active controls have a label, inactive controls do

not.

In addition, , 'ected flight data is displayed in this window. The c- -nbined

time and line (frame) counter parameters are displayed as are the yaw attitude

(heading), airspeed, '.rnd altitude mean sea level (MSL) parameters. The altitude

above ground level (AGL) as computed from the terrain data is displayed. The

current field of view is also shown.

G. PLATFORM POSITION UPDATE MODIFICATIONS

1. Position Update In MPS

The MPS system uses the algorithms developed in VEH to update platform

positions for both the two and three dimensional displays [Ref. 7:p. 21]. The

displacement of a platform is calculated as a function of the speed of the platform and

the elapsed time since the last update of the platform's position. The direction of the

displacement is based upon the platform's compass heading. The pitch and roll of the

ground platforms are calculated in relation to the slope of the terrain over which the

platforms are traversing. Flight dynamics are not incorporated into the display of the

FOG-M. All changes in a missile's altitude and heading are done in a level flight

attitude which elimininates the need for pitch and roll calculations.

44

As the user controls a platform in MPS, any changes in the platform's speed

and heading are recorded in the Vehicle data record for the platform. The linked list

of Vehicle data records is scanned during the platform position update cycle. The

position of each platform is updated based upon the data currently stored in the data

records.

2. Position Update In CAST

The update of an aircraft's position in the CAST system is based upon the

aircraft's flight data file. During the position update cycle, the linked list of Vehicle

records is scanned. Each Vehicle record contains a pointer into the flight data record

linked list for the aircraft. This points to the current flight data record to be used for

display of the aircaft. The flight parameters stored in the current flight data record are

used to update the Vehicle record. Since the parameters are recorded at varying

rates by the flight recorder, some fields in the Vehicle record are not updated on

every cycle. These fields retain the values from previous updates.

The displacement calculation for position update is done differently in CAST

than in MPS. Each frame of flight data in the CAST system represents a one eighth

second time interval. Elapsed time calculations between display of graphics frames

are no longer required. The distance traveled by an aircraft between display of

graphics frames is simply calculated by multiplying the aircraft's speed by one eighth

of a second.

In CAST, aircraft flight dynamics are modeled from the roll, pitch, and yaw

attitude flight parameters recorded in the flight data. The roll, pitch, and yaw of an

aircraft are done around the center of gravity point of the airframe.

45

H. MODIFICATION OF VIEWING PERSPECTIVE

The viewpoint in MPS is fixed with respect to the platform body coordinate

system. The IRIS graphics software requires that the viewpoint be expressed in

terms of the graphics system's coordinate system. By placing the viewpoint at the

origins of the X and Z-axes of the platform body coordinate system, a relatively

satisfactory viewing perspective was achieved. This approach to the placement of the

viewpoint presented two problems during the development of CAST. When the

viewpoint was translated away from the X and Z-axis origins for placement at the

cockpit flight stations; and the aircraft was rotated, the viewpoint did not rotate with

the aircraft. Instead, the aircraft rotated around the viewpoint. Additionally, the

horizon was not properly displayed as the aircraft pitched and rolled. Figure 19(a)

shows a proper representation of how the horizon should be displayed while in a right

banking turn. Notice that the cockpit of the aircraft remains level while the horizon is

tilted. Figure 19(b) shows how the right banking turn was displayed using the MPS

viewpoint scheme. Here, the horizon remains level and the cockpit is tilted.

To correct these problems, a coordinate system transformation was required

between the viewpoint expressed in the body coordinate system of the aircraft and

the coordinate system of the IRIS workstation. The required transformation was

developed by another thesis student who was also using the MPS system as a

baseline for his thesis work [Ref. 12:p. 18-20]. The program which he developed to

perform the coordinate system transformation was modified to run in the CAST

system. This code can be found in Appendix B. The result was a viewing perspective

which accurately models what is seen from an aircraft.

46

(a) Proper Display of the Horizon in CAST

(b) Iniproper Display of the H-orizon in MPS

Figure 19 DisplaY of the Horizon in CAST and NIPS

47

I. ALTITUDE SMOOTHING

When the actual altitudes recorded in a flight data file are used for the display of

an aircraft, the display becomes somewhat unstable. The aircraft appears to bounce

up and down on screen. This is due in part to the inherent inaccuracy of the

barometric altimeter from which the flight data is recorded. The relatively slow

sample rate for recording altitude data also is a factor. Since the altitude parameter is

only recorded twice per second, the CAST system uses each altitude for the display

of four consecutive frames when the actual altitude option is selected from the

ALTITUDE popup menu. On the display of every fourth frame, a new altitude is

used. Since the altitude samples are taken at half second inte'valq. a significant

change in altitude can occur between the samples. To overcome the unstable display,

a smoothed altitude option was implemented in CAST.

1. Altitude Smoothing Algorithms

Several algorithms were tested for smoothing the altitude data. All of the

algorithms involved averaging several consecutive altitude samples. The number of

samples averaged and the weight assigned to the altitude for the current display

frame were varied in the algorithms. The goal for the smoothing algorithm was to

minimize the difference between consecutive smoothed altitude values while keeping

the smoothed altitudes close to the actual recorded values.

Six smoothing algorithms were tested. Three of the algorithms averaged

three consecutive altitudes and three averaged five consecutive altitudes. In each set

of algorithms, the weight assigned to the altitude for the current frame being

displayed was set at one, two, and three. The algorithms used are shown in Table 6.

48

TABLE 6 ALTITUDE SMOOTHING ALGORITHMS

NAME ALGORITHM

s-3-1 (ALTCfI + (1 * ALTcf) + ALTCf+I) / 3

s-3-2 (ALTcf..1 + (2 * ALTcf) + ALTCf+1) / 4

s-3-3 (ALTCfI + (3 * ALTCf) + ALTcf+1) / 5

s-5-1 (ALTCf. 2 + ALTcf.l + (1 * ALTcf) + ALTcf+l + ALTcf+2) / 5

s-5-2 (ALTCf. 2 + ALTcf.1 + (2 * ALTcf) + ALTcf+l + AITcf+2) / 6

s-5-3 (ALTcf. 2 + ALTCf.1 + (3 * ALTcf) + ALTcf+l + ALTcf+2) / 7

cf = current frame

2. Algorithm Testing

A random sample of 200 consecutive altitudes was extracted from a flight

data file to test the algorithms. Within the sample block of altitudes, the maximum

change between altitudes was 145.0 feet. The average change between altitudes

was 35.8 feet. T, -le 7 shows the results of the algorithm testing. Listed in the table

are the maximum and average changes between smoothed altitude values and the

maximum and average differences between the smoothed altitude values and the

actual altitude values. After comparing the results from the six algorithms, the s-5-2

algorithm was selected for the implementation of the altitude smoothing option. This

algorithm provides the best balance between minimizing the change between

smoothed altitude values and keeping the smoothed values close to the recorded

altitudes.

49

TABLE 7 SMOOTHING ALGORITHM RESULTS

ALGORITHM

NAME s-3-1 s-3-2 s-3-3 s-5-1 s-5-2 s-5-3

Maximum change 49.0' 59.0' 70.0' 41.0' 39.0' 51.0'
between smoothed
altitudes

Average change 14.1' 14.8' 17.8' 11.3' 12.5' 14.9'
between smoothed
altitudes

Maximum difference 87.0' 65.0' 52.0' 92.0' 77.0' 66.0'
between smoothed
& recorded altitudes

Average difference 21.1' 15.9' 12.6' 22.8' 19.0' 16.3'
between smoothed
& recorded altitudes

3. Additional Altitude Smoothing

The use of the s-5-2 smoothing algorithm only partially handles the altitude

smoothing task. The algorithm is applied only to every fourth frame of flight data.

This still leaves three frames to be smoothed between each pair of s-5-2 smoothed

altitudes. The altitudes for these frames are calculated by successively adding one

fourth of the difference between the two surrounding s-5-2 smoothed altitudes to the

first altitude in the s-5-2 smoothed pair. The graph in Figure 20 shows the results of

smoothing a four second block of altitude data. The altitude smoothing is done in

CAST when an aircraft is added to the system. The smoothed altitude values are

stored in the Fit_datarec records. When the smoothed altitude option is selected,

these values are used to update the Vehicle records instead of the altitudes recorded

by the flight data recorder. The altitude smoothing code can be found in Appendix B.

50

990

970

A 950
L
T 930
I

T 910
U

E 890

(feet) 870

850

830 - _

0 1 2 3 4

TIME (seconds)

Flight data recorder altitudes

Smoothed altitudes

Figure 20 Altitude Smoothing

51

V. CONCLUSIONS AND RECOMMENDATIONS

A. SYSTEM PERFORMANCE

One goal of all research conducted in the Graphics and Video Laboratory at the

Naval Postgraduate School is to develop graphics systems which run in real time.

Real time implies that the frame display rate is fast enough to provide smooth,

continuous animation. The standard against which real time performance is based is

the projection of motion picture film. Motion picture film is projected at a rate of

twenty four frames per second. Because of the complexity of the systems developed

in the Graphics and Video Laboratory, the standard is rarely met. Frame update

rates are achieved, however, which do provide a reasonably smooth animation of

objects displayed.

The frame update rate for a system varies depending upon the complexity of the

graphics being displayed. The frame update rate for the MPS system can vary

anywhere between less than one to fifteen frames per second depending upon the

number of vehicles displayed, the terrain detail, and the field of view [Ref. 7:p. 63].

The performance goal for the CAST system was to accomplish a frame update

rate of eight frames per second. Since the flight data is recorded at a rate of eight

samples per second, a frame update rate of eight frames per second would provide a

true real time visualization of the flight recorder data An average frame update rate of

six frames per second was achieved in the CAST syatem. This equates to a seventy

five percent real time display of the data. IRIS system statistics were monitored

during the testing of CAST. Graphics drawing routines accounted for over ninety

52

percent of the system usage. It is doubtful that the CAST program can be optimized

for a faster display rate, but a seventy five percent real time display rate is very good.

B. CAST SYSTEM LIMITATIONS AND FUTURE RESEARCH

The overall goal of this research was to develop a prototype crash analysis

simulator. Since the simulator developed is a prototype, it has several limitations.

Future work can be performed to solve these limiations and provide an even more

valuable tool for the investigation of aircraft mishaps.

1. Aircraft Placement And UTM Grid Coordinates

When an aircraft is added to the system in the current implementation of

CAST, the operator selects a position on the two dimensional terrain map for the

initial placement of the aircraft. This does not always allow the helicopter to follow

the path over the terrain in which the mishap occurred. The present flight data

recorders do .it record position location data, however, the UTM grid coordinates of

the crash site are known. A routine can be added to CAST which computes the flight

path of an aircraft based upon the known coordinates of the crash site. The flight data

records can be read in reverse order to accomplish this task. The airspeed and the

back course heading in each record could be utilized to compute the UTM grid

coordinates of the aircraft for the frame. The initial grid coordinates for the flight can

then be found and the aircraft can be placed at those coordinates by the system.

During the development of CAST, concurrent work was being conducted by

other students who were also using the MPS system as a basis for their research.

One result of this research was the use of UTM grid coordinates for the positioning of

53

platforms [Ref. 13]. The procedures developed in this research can be incorporated

into CAST to provide the UTM grid coordinate positioning of the aircraft.

2. Operational Area Boundaries

A 10km X 10krm grid square is selected in both CAST and MPS for the

operation of the platforms. When a platform reaches a boundary of this 10km X 10km

area, it is considered to have crashed. This restricts the flight of an aircraft to the

10km X 10km area in CAST. The crashing of platforms at grid square boundaries has

now been eliminated from MPS [Ref. 13]. Instead of crashing a vehicle at a grid

square boundary, the system allows the operator to select an adjacent grid square for

continued operation. This procedure can be placed into the CAST system.

3. Modeling Of Additional Aircraft

Only the AH-1 COBRA helicopter is currently modeled in the CAST

system. Other aircraft need to be modeled. The first candidate aircraft for addition to

CAST is the UH-60 BLACK HAWK helicopter since this is the only aircraft which

presently is equipped with a flight data recorder. Additional aircraft which can be

modeled include the AH-64 APACHE, CH-47D CHINOOK, and OH-58D KIOWA

helicopters and the OV- 1 MOHAWK airplane. All of these aircraft are scheduled for

eventual installation of flight data recorders.

During the development of CAST, concurrent work was being conducted in

the Graphics and Video Laboratory to develop a standard text-based file format for

the display of three dimensional objects [Ref. 14]. This file format should be

incorporated into the CAST system for e . display of the aircraft.

54

4. X-Y Plotting Of Flight Data

The PC based crash analysis system has the capability of plotting any eight

of the sixty four flight data parameters against time on an X-Y plot. This feature was

not implemented in the prototype CAST system but should be added. A window can

be defined in CAST for plotting flight data parameters. This window can be

positioned in the same location as the MAPWIN graphics window. The winpush and

winpop commands can be used to selectively display X-Y plotting of flight data or the

three dimensional display of the flight.

5. Selective Frame Display

The current implementation of CAST allows continuous, automatic, forward

linear progression through a flight data file or manual single stepping forward and

backward through a file. An option can be added to CAST which will allow the user to

select any frame of data for display.

6. Adverse Flight Condition Warning

The CAST system can be modified to provide a warning indication to the user

any time that an adverse flight condition is encountered in the flight data. This

indication can be in the form of a message and the ringing of the system bell. The

current frame can be frozen while the user analyzes the flight data causing the

warning.

C. CONCLUSIONS

The prototype crash analysis simulator developed for this study has great

potential to become a valuable crash investigation tool. Future work in the

55

development of the CAST system will provide a tool that can be instrumental in the

prevention of U.S. Army aviation accidents through the detailed analysis of mishaps

with CAST.

56

APPENDIX A

CAST USER'S GUIDE

The purpose of this user's guide is to provide instructions for the operation of the

CAST system which vary from the operation of the MPS system. A detailed guide on

the operation of the MPS system can be found in Appendix A of Reference 7. The

instructions provided here are for a routine analysis session with CAST.

A. PREPROCESSING FLIGHT DATA FILES

Before the CAST system can be used to analyze flight data, the Lotus 1-2-3

format flight data files of the aircraft involved in a mishap must be convened to CAST

format files. This is done with the convert utility program. The filenames in the

fopen commands of the convert program must be edited before converting each Lotus

1-2-3 file. The open for reading command must specify the name of the Lotus 1-2-3

flight data file to be converted. The filename specified in the open for writing

command can be any filename not currently being used. Be sure to remember the

CAST format filenames as they will be used when an aircraft is added to the CAST

system. When a Lotus 1-2-3 format data file has been converted, the CAST format

data file must be edited to insert the three digit tail number of the aircraft as the first

item in the data file. The tail number must be on a seperate line immediately before

the flight data. The flight data files for the aircraft to be displayed by the system must

reside in the same directory as the CAST executable code when the CAST system is

starcd.

57

B. STARTING THE CAST SYSTEM

The cast system has three modes of operation:

1. Silent mode - When the silent mode of operation is selected, the system bell
is not rung to indicate acceptance of user input. CAST is started in this mode
with the command cast -s.

2. Test mode - When the test mode is selected, the opening rotating billboard is
not displayed. CAST is started in this mode with the command cast -t.

3. Normal mode - This is the normal mode of operation without the silent or test
modes selected. CAST is started in this mode with the command cast.

The silent mode and the test mode can be selected at the same time by listing

both options in the opening command (ie. cast -s -t).

Once the opening command has been given and the 4Sight window positioning

square has been displayed on the screen, open the CAST window to the maximum

si7e possible.

C. SELECTING AN AREA OF OPERATION

When the CAST welcome screen is displayed, select the GO TO SELECT AN

AREA option from the OPENING MENU popup. This will read in the default terrain

database, display the two dimensional contour map of the terrain, and bring up the

AREA SELECT MENU popup. If the proper terrain database is not currently being

used, the TERRAIN DATABASE SELECTION roll-off-the-side menu can be

selected to import the correct terrain database. Once the proper terrain contour map

is displayed, a 10km X 10km area of the map can be selected. Use the SELECT AN

AREA OF THIS MAP option of the AREA SELECT MENU popup to do this. When

the area of operation has been selected, the aircraft to be displayed can then be

58

added. Use the GO TO MAIN MENU option of the AREA SELECT MENU popup to

enter the aircraft.

D. ENTERING AIRCRAFT FOR DISPLAY

When the GO TO MAIN MENU option is selected, a two dimensional contour

map of the area of operation is displayed along with the MAIN MENU popup.

Aircraft can be added, deleted, and selected for operation with the MAIN MENU

popup. To add an aircraft, select the ADD A PLATFORM option from the MAIN

MENU popup. Then select the appropriate aircraft to add from the ADD A

PLATFORM MENU popup. Currently only a COBRA helicopter can be selected from

the ADD A PLATFORM MENU popup.

When a helicopter is selected from the ADD A PLATFORM MENU popup, a

helicopter icon is displayed on the screen. Use the mouse to position the icon at the

location on the contour map where the helicopter is to be added and click the right

i iouse button to fix the position. A message is then displayed in the PANELWIN

graphics window to enter the name of the CAST format file which contains the flight

data for the aircraft. After the filename has been entered, the MAIN MENU popup is

again displayed. Additional aircraft can now be added.

E. DELETING AIRCRAFT FROM THE SYSTEM

Aircraft can be removed from the CAST system at any time by using the MAIN

MENU popup. Individual aircraft can be deleted or all aircraft can be deleted at once.

The DELETE A PLATFORM option of the MAIN MENU popup is used in CAST in

the same mannar as it is used in MPS. When an aircraft is deleted from the CAST

system, the associated flight data file is also deleted.

59

F. SELECTING A PLATFORM TO OPERATE

When all aircraft have been added to the CAST system, an aircraft must be

selected for operation. The flight data of the aircraft selected for operation will be

utilized for the display of the graphics in the PANELWIN and DISPLAYWIN

graphics windows. The pilot's and copilot's views will be displayed from the aircraft

selected for operation. If an external eyepoint is selected, the viewpoint will be the

center of gravity of the aircraft under operation. The SELECT A PLATFORM TO

OPERATE option of the MAIN MENU popup is used to select an aircraft as is done

in MPS. Once an aircraft is selected for operation, the three dimensional graphics of

the aircraft flight are displayed. The aircraft being operated can be changed at any

time by returning to the MAIN MENU popup. A RETURN TO MAIN MENU option

is provided in the FLYING PLATFORM OPERATING MENU popup so that this can

be done.

G. CHANGING THE EYEPOINT

When the three dimensional depiction of the aircraft flight is being displayed, the

eyepoint can be changed. The EYE POSITION OPTIONS roll-off-the-side-menu is

selected from the FLYING PLATFORM OPERATING MENU popup to do this. The

EYE POSITION OPTIONS menu allows selection of the eyepoint at the pilot station

(PILOT SEAT option), copilot station (COPILOT SEAT option), or outside the

aircraft (OUTSIDE HELICOPTER option). When the pilot or copilot station is

selected, DIALA and DIAL5 of the dial box are used to control the side to side and up

and down motion for the look position. When an outside eyepoint is selected;

60

DIALO, DIAL2, and DIAL3 are used to control the position of the eyepoint. DIALI is

used to vary the field of view regardless of the eyepoint.

H. SELECTING AN ALTITUDE OPTION

The ALTITUDE OPTIONS roll-off-the-side menu is selected from the FLYING

PLATFORM OPERATING MENU popup to change the method for which the altitude

of the aircraft under operation is computed. The ALTITUDE OPTIONS menu allows

the aircraft to be displayed at a constant altitude of 200 meters above ground level

(CONSTANT ALTITUDE option), at the actual altitudes as recorded in the flight

data (ACTUAL ALTITUDE option), or at altitudes which are computed by smoothing

the actual flight altitude values (SMOOTHED ALTITUDE option).

I. SELECTING A FRAME DELAY OPTION

The rate at which the graphics frames are displayed can be varied with the

FRAME DELAY OPTIONS roll-off-the-side menu. This menu can be selected from

either the FLYING PLATFORM OPERATING MENU popup or the MAIN MENU

popup. A one, two, or five second delay between display of frames can be selected

with the ONE SECOND DELAY, TWO SECOND DELAY, or FIVE SECOND

DELAY options. A manual, single step forward/backward option can be selected

with the MANUAL FORWARD/BACKWARD option. When this option is selected,

the left mouse button is used to step backward one frame at a time and the right

mouse button is used to step forward one frame at a time. A frame delay can be

eliminated by selecting the NORMAL SPEED - NO DELAY option from the

FRAME DELAY OPTIONS menu.

61

J. EXITING CAST

To exit from the CAST system, the EXIT THE PROGRAM option is used. This

option can be selected from the OPENING MENU, AREA SELECT MENU, MAIN

MENU, or FLYING PLATFORM OPERATING MENU popups.

62

APPENDIX B

SELECTED CAST SOURCE CODE

FILENAME addveh.c
CALLED BY do_the_add
CALLS mousescreentoterrain

setwindow
dothefilename
get-next__alt

MODIFIED :7/13/88
PERSON David Jennings
MODIFIED April 1989
PERSON CPT(P) Mark J. Christian
I TOD Modified for the CAST system to read in flight data and smooth altitude data.
PURPOSE Allocate storage & initialize structure for new node in vehlist linked list. The

node is added at the end of the list. Reads in flight data for the aircraft and
performs altitude smoothing.

#include "Cast.h"

#include <math.h>

addveh(sx,sy,wx,wy,vehtype)

short sx; /* x screen coord of vehicle
short sy; /* y screen coord of vehicle
float wx; /* x world coord of vehicle
float wy; /* y world coord of vehicle
short vehtype; /* vehicle type */

exter Vehicle *vehlist
extem Vehicle *vehlistnd;
extern Object vehicon[];
extern short numveh[];

Vehicle *temp;
Fit_datarec *flt-temp,*flt temp2,*fltdata_listend;
float angle,ax,ayaltchg,smooth[6];
short win,samplejtype;
int i;
float tx,ty;
char *mallocO;
Boolean done = FALSE;
char filename[80];
FILE "f;

/* allocate storage for new node */
temp = (Vehicle *)(malloc(sizeof(Vehicle)));

63

temp->flt-data = NULL; /* set initially to NULL *
temp->next =NULL;

/* READ IN THE FLIGHT RECORDER DATA ~

/* Open the flight data file for reading *
f = NULL;
while(f = NULL) /* loop until a valid data file name is entered *

do -the -filename(filename);
f = fopen(filename,"r");

/* read in die aircraft tail number *
fscanf(f,'%d,&temp->taiL-nbr);

/* read in the flight data *
sample-type = 0;
while(!done)

fit-temp = (Ftdatarec *) (malloc(sizeof(Fludata-rec)));

switch(sample-type)

case 0: if(fscanf(f,"%d%f~lf~lf~lf~of~lf~lf~lf~lf~ld%d%f%fclfclf%d%d',
&flt_temp->framneno,&flt-temp->time,&flt-temp->pitch,
&fit -temp->rol,&ft temp->yaw,&fl-temp->long-cychc,
&flt_temp->la~cyclic,&flt -temP->pedals,
&flt-temp->collective,&flt -emp->airspeed,
&flt-temP->altitude,&flt-temp->altrate,
&flt-temp->engljorque,&ftemp->eng2.torque,
&flt-temp->rotor-rpm,&flt -temp->stabj-os,
&flt~temp->discretel,&flLtemp->discrete2) != EOF)

fit -emp->frequency = TYPE 18; /* set sample type *
fiu- emp->next = NULL; /* indicate end of list *
sample-type++; /* increment sample type ~

/* add the record to the list */
if(temp->flt-data == NULL)

tcmp->flt-data = filttemp;
else

fi t-data-list_end- >next = fit-temp;

if(temp->flt-data! fltjtemp)
flt-tcmp->prev = fit-data-list-end;

else
fltjemp->prcv = fitjtemp;

fit -data -list -end = flttemp;

else
done = TRUE;

break;

case 4: if(fsc-anf(f," %d% f%f%f%fO/f%f%f%f%f%d%d%f% f%f',
&flt -temp->frame-no,&flt -emp->time,&flt-temp->pitch,
&flt -temp->roll,&fltjtemp->yaw,&fltjtemp->Iong-cycic
&flt -temp->lat-cyclic,&flt-emp->pedals,
&flt -temp->collective,&flz-temp->aiispeed,
&flt-temp->altitudc,&flt-temp->alt-rate,

64

&flt-temp->eng I -orque,&fiuetmp->eng2-torque,
&flt-temp->rotor rpm) != EOF)

fltjemp->frequency = TYPEI15; /* set sample type *
flt-temp->next = NULL, f* indicate end of list *
sample.3ype++; /* increment sample type *

/* add the record to the list */
if(temp->flt-data = NULL)

temp->flt-data = filttemp;
else

fit_data_list-end->next = flt_temp;

if(temp->fitjlata != fi-temp)
flt_temp->prev = fir_data_llstend;

else
fir-temp->prev = flttemp;

fit -data -list -end = fitjemp;

else
done = TRUE;

break;

case 2:
case 6: if(fscanf(f,"%d%fc/f%fO/f%f%f%f%f",

&flc temp->frameno,&flt temp->Ume,&flt temp->pitch,
&flt~temp->roll,&flttemp->yaw,&flt temp-lngcic
&flt -temp->lat-cyclic,&flt-emp->pedals,
&flt - emp->collective) !=EOF)

flt - emp->frequency = TYPE9; /* set sample type ~
fit temp->next = NULL; /* indicate end of list *
samnple jype*+; /* increment sample type *

/* add the record to the list */
if(tcmp->flt-data ==NULL)

temp->flt_data = fitjemp;
else

flt-data-list-end->next = fit-temp;

if(temp->fltdata != fltjtemp)
fit-temp->prcv = fit-data-listend;

else
fit-temp->prcv = flt-temp;

fit-data-list_end = fltjecmp;

else
done = TRU E;

break;

case 1:
case 3:
case 5: if(fscanf(f,'%d%f%f%f%r',

&flt -temp->frame-no,&fitjemp->time,&flt-temp->pitch,
&flt-temp ->roll,&flt-temp->yaw) != EOF)

fli-temp->frequency = TYPE5; 1* set sample type *
filt-temp->next = NULL; /* indicate end of list *
samplcjype+i+; f increment sample type ~

65

/* add the record to the list *
ifwtmp->fit-data = NULL)

temp->fitdata =filtcemp;
else

fitLatajlist-end->next = fit~temp;

if(temp->flt -data != fLttemp)
flLtemp->prev = fit~data.-lisLend;

else
flt-temp->prev =fltuemp;

fit_data-list~end = flttemp;

else
done = TRUE;

break:

case 7: if(fscanf(f,"%d%fc/f%f~ot",
&flt -temp->frameno,&flttemp->time,&flLtemp->pitch,
&flt -temp->roll,& flt temp->yaw) !=EOF)

fit -emp->frequency = TYPE5; /* set sample type ~
filttemp->next = NULL; /* indicate end of list *
samplejyAe = 0; /* increment sample type *

/* add the record to the fist */
if(temp->fit data = NULL)

temp->fft-data = flt-temp;
else

fit-data-list-end->next =fit-temp;

if(temp->flt-data != fit...temp)
flt-temp->prev = fit_datajistend;

else
fltztemp->prev = flttemp;

fit_data-list_end = fl&3emp;

done = TRUE;
break;

/* Close the flight data file *

fclosc(o;

temp->curr-fit-data-rec = NULL;
temp->end_of-fit_data = FALSE;

/* Perform the altitude smoothing. TYPE18 and TYPE15 data
/* records are first used. These records contain flight
/* recorder data for altitude. To smooth the altitudes, *
/* the flight data recorder altitude is multiplied by two *
/* and added to the two previous and the two next flight
/* data recorder altitudes. This sum is then divided by
/* six to arrive at the smoothed altitude. *

fit-temp = temp->fltdata;
smooth[O] = (float)fitjemp->altitude;

66

smooth[l] = smooth[01;
smooth[21 = smooth[0I;
fltjtemp2 = fltUtemp;
fit~temp = getjiext-alt(filtemp);
smooth[31 =(fioat)fit temp->altitude;
fit-temp = get.next @.at(flttemp)-,
smooth [41 = (fioat)fftjemp-->atude;
while(flt-temp2 != fit~temp)

fit -temp2->s -alt=
(smooth [OI+smooth[l1]+(2* smooth[21)+smooth[31+smooth [41) /6;
flt -temp2 = geLnext..alt(fltemp2);
fit temp = get-nexLalt(fit-emp);
smooth?51 = (float)fltjemp->altitude;
for(i = O;i < 5;i++)
smooth[i] = smoothti+1];

fit-temp2->saltalt
(smooth[OI+smooth[l]+(2*smooth[2])+smooth[3+smooth[4J) /6;

/* Now smooth the TYPE5 and TYPE9 data records. These are the *
/* record types which lie between the records that contain *
/* flight data recorder altitudes. Three records are between *
/* each "pair" of flight data altitude records. The smoothed *
/* altitudes inthese records are computed as follows. The *
/* smoothed altitudes immediately surrounding the TYPE5 and *
/* TYPE9 record set are found. The difference is computed *
/* between these two smoothed altitudes. One fourth of this *
I"' difference is then added successively to the three *
/* intermediate records to arrive at their altitudes.

fit -temp = temp->flt -data;
flt -temp2 = flttemp;
fit_temp = geLnext-alt(ftemp);
while(flttemp2 =fit temp)

altchg = (fltjtemp->s -alt - fit_temp2->s.alt) /4.0;
for(i = 0;i < 3;i+e+)

flt -emp2 =flt-emp2->next;
flLtemp2->s_alt =fit-temp2->prev->s_alt + altchg;

fit -temp =get-ncxtalt(flt.jemp);
fit-temp2 =flt-temp2->next;

while(fltjtemp2->ncxt != NULL)

fit -temp2 = fit temp2->next;
fit-temp2->s,_alt = fit-temp->s-alt;

/* Compute terrain coords of screen coords *
mousescreentoterrain(sx,sy,&tx,&ty,&win);

/* Insure that we are in the correct window. *
setwindow(MAPWIN);

/* convert angle from x axis in radians *
temp->cse = temp->it-data->yaw:
angle = (temp->cse <= 90) ? (90.0 - temp->csc) *DTOR

67

(450.0 - temp->cse) * DTOR;

/* determine world coordinates for vehicle course arrowhead *
ax = wx + ARROWLENGTH * (float)(cos((double)angle));
ay = wy + ARROW-LENGTH * (float)(sin((double)angle));

f* now draw the icon and arrow indicating vehicle's course ~
frontbuffer(TRUE);

move2(wx,wy);
callobj(vehicon[vehtypel);,

frontbuffer(FALSE);

frontbuffer(TRUE);
linewidth(2);
setcolor(WHITE);
move2(wx,wy);
draw2(ax,ay);,
draw2(ax - ARROW_WINGLENGTh*

(float)(cos((double)(angle + ARROWWINGANGLE*DTOR))).
ay - ARROWWING_ LEN '-- *
(float)(sin((double)(angle -. W-WING..ANGLE*DTOR))));

move2(ax,ay);
draw2(ax - ARROWWINGLENGTH*

(float)(cos((double)(angle - ARROWWINGANGLE*DTOR))),
ay - ARROW_-WING_LENGTH *
(float)(sin((double)(angle - ARROWWINGANGLE*DTOR))));

linewidth(1);
frontbufferWFALSE);

/* fill in structure members *

temp->t =vehtype;

temp->x = x;
temp->y =gndjlevel(tx,ty);

temp->z =-ty;

temp->ang = angle;
temp->roll = temp->fltdata->roll;
temp->pitch = temp->ftdata->pitch;

temp->lookaz 0.0;
ternp->lookel =0.0;

temp->gnidx = (short)(tx / TENTI-IKM);
ternp->gridz = (short)(ty / TENTHKM);
temnp->alt = temnp->y + COBRA_INIT_HT;

tcmp->vel = 0.0;
temp->sx = (float)(sx);
temp->sy = (float)(sy);

/* now add the vehicle node to the veblist linked list. *
if (vehlist == NULL)

vehlist = temnp;
else

vehlistend->ncxt = temp;

vehlistend = temp;

/* now there is one more vehicle of this type. *1
nurnveh[vehtype] += 1;

68

FILENAME caic_lookparameters.c
CALLED BY set -driven-view
CALLS trnsformbody~to -world

update-look-pos cobra
CREATED
PERSON MAI William Teter
MODIFIED :16 May 89
PERSON :CPIT(P) Mark J. Christian
MOD :Modified to conform to the CAST program
PURPOSE :Calculates parameters for view from helicopter

#include "Cast.h"

calcjlookparameters(offsetx,offset-y,offset-z,eye-x,eye-y,eye-z,
pt-x,pt-y,pt-z)

float offset-x,offset-y,offsetrZ;
float *eyex,*eyey,*eyez;
float *ptx,*pty,*ptz;

extern Vehicle *driven;
extern short eye-position;

float viewposn-offset-x, viewposn-offsety, viewposn-offset.z;

/* Calculate eye position offset from center of plaform in world
coordinates.

tnsfortnubody-soworld(driven->ang.
dniven->pitch * DTOR,driven->rolI * DTOR,

offset_x, offset..y, offset-z,
&viewposn-offset -x,&viewposnoffset-y,
&viewposn-offset-z);

/* Now combine platform position and eye offset to get world coordinates
of eye postion. *

*eye-x = drivcn->x + viewposn-offset-x;
*eye-y = driven->y + viewposnoffsety;
*eye-z = driven->z + viewposn-offset-z;

/* Calculate point looked at for view ~

if(eye-position != OUTSIDE)
updatejlook-pos-cobra(*eye-,*eye-y,*eye-z driven->ang,

driven->pitch * DTO R,dri ven ->roll * DTOR,
-driven->lookaz * DTOR,-driven->lookel * DTOR,
pt-x,pt-y,pt-z)

else

*p-x = driven->x;

*pt-y = driven->y;
*pt-z = driven->z;

69

FILENAME converic
CALLED BY NONE
CALLS readfield

read_field2
CREATED 6 April 1989
PERSON CPT(P Mark J. Christian
PURPOSE This program reads a flight data file which is in a Lotus

1-2-3 format and reformats it to the CAST format. Flight
data is recorded in one second cycles with eight intervals
per cycle. Flight parameters are recorded at varying sample
rates (1, 2,4, or 8 samples per second). The specific
interval within a cycle determines the parameters which are
recorded. A cycle begins with a sample which contains all
flight parameters.

#include <stdio.h>
#include "fltdata.h"

mainO

char chrl5O[150],fr[71,ct[10],pa[7],ra[7Lya[6],longs[61;
char lats[6],pp[6],cs[6],as[6],alt[6],altr[6],etl[6],et2[6],rotor[6];
char stab[61,chr;
unsigned int discrete 1,discrete2;
int ij;
FILE *f,*g;

open the Lotus 1-2-3 format flight data file, the filename in the
open command must match the file to be converted, therefore editing
may be needed here*/

f = fopen("ac506z.trn","r");

f4
open a temporary file for writing the CAST format file into, this
filename may be changed as needed*/

g = fopen("tempfile.z","w")

i= 0; /* index for input string */
j = 0; /* cycle interval counter */

/*
scan the entire input file until End of File is encountered

while(fscanf(f,"%c",&chr) != EOF)

/*
read in characters into the input string until a line feed
is encountered*/

if (chr != '112")

chrl50[il = chr;
i++;

/*

70

when a line feed is encountered, process the data read in

else

switchoj)

five parameters are processed for intervals
1, 3, and 5 and the interval counter is incremented

case 1:
case 3:
case 5:

rea&.field(FR,fr,chrl 50);
read~fied(CT,ct,chrl5O);
readjield(PA,pa,chrl 50);
read-field(RA,rachrlSO);
read field(YA,ya,chrl 50);

j++
write out the parameters in CAST format

fprintf(g,'%s %s %s %s %s\n",fr,ctpa,ra,ya);
break:

five parameters are processed for interval 7
and the interval counter is reset to zero

case 7:
read -ield(FRfr,chrl 50);
read..field(CT,ct,chr 150);
read -ield(PA,pa,chr1 50);
readlfield(RA,ra,chrl 50);
read field(YA,ya,chrl 50);
j =0

write out the parameters in CAST format

fprintf(g,'%s %s %s %s %s\,n" ,r,ct,pa,ra,ya);
break;

nine parameters are processed for intervals 2 and
6 and the interval counter is incremented

case 2:
case 6:

read field(FR,fr,chrl 50);
read -ield(CT,ctchr1 50);
read -field(PA,pa,chrl 50);
read -field(RA ,ra,chrl 50);
read field(YA,ya,chr 150);
read -field(LONGS,Iongs,chrl 50);
read..field(LATS,lats,chr 150);
read -field(PP,pp,chrl 50);
readjield(CS,cs,chr 150);

write out the parameters in CAST format

71

fprintf(g,"%s %s %s %s %s %s %s %s %7s\n',
fr,ci~pa,ra,ya,longs,lazs,pp,cs);

break;

fifteen parameters are processed for interval 4
and the interval counter is incremented

case 4:
read-field(FR,fr,chrl 50);
readjield(CT~ct,chr 150);
read field(PApachrl 50);
read~field(RAxra,chrlSO);
readjield(YA,ya,chrl 50);
read field(LONGS,longs,chrl5O);
read..field(LATS,lats,chrl5O);
readjfield(PP,pp,chrI5O);
read~field(CS,cs,chrl 50);
read field(AS,as,chrl5O);
read.-.field(ALT,alt,chr1 50);
read.field(ALTR,altr,chrl 50);
read.field(ETI ,etl,chrI5O);
read-ield(ET2,et2,chrl5O);
read field(ROTOR ,rotor,chrl 50);
j++

write out the parameters in CAST formnat

fprintf(g,"%s %s%s %s %s%s%s %s%s %s%s",
fr,ct,pa,ra,yajlongs,lats,pp,cs,as,alt);

fprintf(g," %s %s %s %s\n',
altr,etl ,et2,rotor);

break;,

sixteen parameters and fifty discrete values are
processed for interval 0 and the interval counter
is incremented

case 0:
read -field(FR,fr,chrl 50);,
read -field(C T,c t,chrl 50);
read -field(PA,pa,chr1 50);
read -field(RA,ra,chrl 50);
read -field(YA,ya,chrl 50);
read -field(LONGS,longs,chrl 50);
read field(LATS,Iats,chrl 50);
read'ield(PP,pp,chr 150);
read field(CS,cs,chr1 50);
read field(AS,as,chrl SO);
read -field(ALTalt,chr 150);,
read -field(ALTR,altr,chr]1. 50);
read -field(ETI ,etl ,chr 150),
read -field(ET2,et2,chr 150);
read -field(ROTORrotor,chrl 50);
read -field(STAB ,stab,chrl 50);
read field2(& discrete 1 ,&d iscrete 2,chr 150);
j++

72

write out the parameters in CAST format

fprintf(g,%s %s %5%s%s %s %s%s %s %S %s',
fr,ct,pa,ra,ya,longs,lats,pp~cs.q-,altQ;

fprintf(g," %s %s %s %s %s %Fi %8c',
altr,etl ,et2,rotor,stab,discretel ,discrete2);

break;

i 0; /* reset input string index ~

close the Lotus 1-2-3 and CAST format data files

fclose(O);
fclose(g);

PROCEDURE :read-field
PURPOSE This procee'Me extracts flight parameter data from the

input string so that it may be written out in CAST formaL
Each parameter is in a specific position in the input
string.

read-field(field-namne,field ,input line)

mnt field_name;
char *field,*input-line;

int k;

the field name (parameter name' dCeeMines where in the input
string to extract the data

switch(field name)

case FR: 1* FRame (line) counter ~
for(k = O;k < 6;k++)

fieldikI = inputjinck1 '
field[61 = *
break:

cas-e CT: /* Combined Time *
for(k = 6:k < 15:k++)

fieldlk-61 = inpu~jineiki
field[9J).
break;

case PA: /I Pitch Attitudc e
for(k = 15k * < 21 ,k ++)

field[k- 151 = input_Iine[ki;
fieldf 6] = V':
break;

cas e RA: /* Roll Attitude ~
for(k = 2 I;k < 27 k +)

.73

field[k-21] = input-line~k];
field [6] = W);
break;

case YA: /* Yaw Attitude *
for(k = 27;k < 32;k++)

field[k-271 = inputjlinefk;
field[5I = V)';
break;

case LONGS: f* LONGitudinal Stick *
for(k = 32,k < 37;k++)

fieldfk-321 = input-ine[k];
fieldf5I = V)';
break;

case LATS: /* LATitudinal Suick *1
for(k = 37;k < 42-k+e+)

fieldllk-37] = inputjline[k);
field[51 = V';
break;

case PP: /*' Pedal Position ~
for(k = 42;k < 47;k++)

field[k-421 = input-inc[k];
field[5] = "0';
break;

case CS: f* Collective Stick *
for(k =47;k <52;k++)

field~k-471 = input-linefkl;
field[51 = V)';
break;

case AS: /* AirSpecej*
for(k = 52;k < 57;k++)

field[k-52] = inputjline[kI;
field[5] = V)';
break;

case ALT: f* ALTitude *
for(k =57;k < 62k++-*)

ficldfk-57) = inputjlinelk];
fieldI5I = V',
break;

case ALTR: /* ALTitude Rate ~
for(k = 62;k < 67;k++)

fieldlk-621 = input lineR 1;
field15] = ';
break;

case ETI: /* Engine Torque # I/
for(k = 67;k < 72;k++)

field[k-67) = inpuijinelk);
field[5] = W);
break;

ca-se ET2: f* Engine Torque #2 *

for(k = 72;k < 77;k++)
field[k-721 = inputline[k];

field[5] = 0';
break;

case ROTOR: /* ROTOR rpm */
for(k = 77;k < 82;k++)

field[k-77] = inputjline[k];
field[5] = "V';
break;

case STAB: /* STABilator position */
for(k = 82;k < 87;k++)

field[k-82] = input_line[k];
field[5] = "0';
break;

PROCEDURE : readfield2
PURPOSE : This procedure heads the fifty discrete parameters and

codes them into two unsigned integers. The integers are
used as bit fields to indicate which discretes are on.

read field2(disc I ,disc2,inline)
unsigned int *discl,*disc2;
char *inline;

intj;
unsigned int temp,powers;
temp = 0;
powers = 16777216;1*

code the first 25 discretes*/
for(j = 87;j < 112;j++)

if(in-lineU] == V61') /* 1 */
tcmp = temp + powers;

powers = powers / 2;

*disc I = temp;
temp = 0;
powers = 16777216;

code the second 25 discretes
*/
for(j = 112;j < 137;j++)

if(inlinejl == "4)61') /* 1 /
temp = temp + p.wers;

powers powers / 2;

*disc2 = temp:

75

FILENAME draw_cobra.c
CALLED BY draw_terrain
CALLS draw_main rotor, draw ailrotor, draw-tail-pipe
CREATED :14 Mar 89
MODIFIED:
AUTHOR : CPT(P) Mark J. Christian
PURPOSE : Draws the body of a Cobra helicopter

#include "Lightcons.h"
#include "gl.h"
#include "Rotdat.h"

draw cobraO

extern float pn4gcobra[90][31;
extem float pn3gcobra[16][3];
extern float pn6gcobra[2][31;
extem float pn4irs[8][3];
extem float pn8irs[3];
extent float pn4cabin[31][31;
extern float pn3cabin[21[3];

extem float p4gcobra[90][4][3];
extern float p3gcobra[16][31[3];
extern float p6gcobra[2][6][31;
extern float p4irs[8][4][3];
extern float p8irs[8I[3];
extern float p4cabin[31][4][3];
extem float p3cabin[2][3][3];

extem Matrix mainrotoracc[4][41;
extern Matrix tailrotoracc[4][4];
int i;

/* draw and rotate the tail rotor, tail rotor is defined about origin */
/* preserve the Cobra drawing matrix */
pushmatrixo;

/* build the accumulative tail rotor rotation matrix */
loadmatrix(tailrotoracc);
rotate(TAILROTORSPEED,'z');
getmatrix(;!rotoracc);

/* get rid of the rotation matrix */
popmarixo;

/* make a copy of the Cobra drawing matrix */
pushmatrixo;

/* "ranslate the tailrotor to the vertical tail */
translate(-8.0909,1.1212,0.0000);

/* apply the tail rotor rotation */

multmatrix(tailrotoracc);

/*draw the translated and rotated tail rotor */
draw tail rotoro;

/* restore the Cobra drawing matrix */

76

popmatrixO;

/* draw and rotate the main rotor, main rotor defined about origin */

/* preserve the Cobra drawing matrix */
pushmatrixo;

/*build the accurmadlative main rotor rotation matrix */
loadmatrix(mainrotoracc);
rotate(MAINROTORSPEED, 'y');
getmatrix(mainrotoracc);

/* get rid of the rotation matrix */
popmatrixo

/* get a copy of the Cobra drawing matrix */
pushmatrixo;

/* translate the main rotor to the top of the Cobra */
translate(0.0000,1.5152,0.0000);

/* apply the rotor rotation */
multmatrix(mainrotoracc);

/* draw the translated and rotated main rotor */
drawmainrotorO;

/* restore the Cobra drawing matrix */
popmatrixo;

/* preserve the Cobra drawing matrix */
pushmatrixo;

/* translate the tail pipe to the engine area */
translate(-1.9394,0.6061,0.0000);

/* rotate the tail pipe into position */
rotate(600,'z');

/* draw the translated and rotated tail pipe */
draw-tail-pipeo;

/* restore the Cobra drawing matri-, /
popmatrixo;

/* draw the body of the Cobra */

lmbind(MATERIAL,COBRABODY);
for (i=0;i<90;i++) {

n3f(pn4gcobra[i]);
bgnpolygon0;

v3f(p4gcobra[i][0]);
v3f(p4gcobra[ii[11);
v3f(p4gcobrali][2);
v3f(p4gcobraji][31);

endpolygon0;

for (i=0;i<16;i++)
n3f(pn3gcobra[i]);
bgnpolygon0;

77

v3f(p3gcobra[i] [0]);
v3f(p3gcobrafilI);
v3f(p3gcobralil[2]);

endpolygonO;

for (i=O;i<2;i++)
njtpn6ycobratil);
bgnpolygono;

v3f(p6gcobrali[O]);
v3f(p6gcobraill [1]);
v3f(p6gcobra[il[2D);

v~~~cbrali] [31);
v3f(p6gcobrafi]f41);
v3f(p6gcobra [i] [5]);

endpolygonO;

Imbind(MATERIAL,IRS);
for (i=0;i<8;i++)(

n3f(pn4irs[il);
bgnpolygonO;

v3f(p4irs[i] [01);
v3f(p4irs[ii[1]);
v3f(p~irs[i][21);
v3f(p4irsti][31),

endpolygonO,

n3f(pn8irs);
bgnpolygono;

v3f(p8irs[0]);
v3f(p8irs[11);
v3f(p8irs[2]),
v3f(p8irstl);
v3f(p8irs[4]);
v3f(p8irs[51);
v3f(p8irs[6]);
v3f(p8irs[7]);

cndpolygonO;

Imbind(MATERIAL,COBRACABIN);
for (i=0;i<3 1;i++)

n3f(pn4cabin[i]);
bg,-;po!%viono;

v3f(p4cabin[ij1[0]);
v3f(p4cabin[iI 1]);
v3f(p4cabin[iHj2P;
v3f(p4cabin[iI [3]);

cndpolygono;

for (i=0;i<2;i++)
n3f(pri3cabinti]);
bgnpolygono;

v3f(p3cabinfi]1[0]);
v3f(p3cabinfi][I]);
v3f(p3cabin[i][21);

endpolygono;

78

FILENAME draw-main rotor.c
CALLED BY draw_cobra-

draw-in-cobra
CALLS
CREATED :19 Mar 89
MODIFID
AUTHOR CP T(P) Mark J. Christian
PURPOSE Draws the main rotor of a Cobra helicopter

#include "Lightcons.h"
#include "gl.h"

draw-main-rotorO

extern float pn4bmnrotor(81f 31;
extern float pn5bmrotor[4][3);
extem float pn4gmast[5][3];

extern float p4bmrotor[g][4][3];
extern float p5bmrotor[4][5][3];
extern float p4gmast[5][41[3];

int 1;

/* draw the Cobra tail rotor ~

lmbind(MATERIALROTORSHAFT);,
for (i=O;i<5;i++)[

n3f(pn4gmastjil);
bgnpolygono;

v3f(p4gmast[i] [0]);
v3f(p4gmast[iI[1 I);
v3f(p4gmast[i1121);
v3f(p4gmastfi][31);

endpolygono;

lmbind(NIATERIAL,MROTORBLADE);
for (i=0;i<8;i++) f

n3f(pn4bmrotor[il);
bgnpolygono;

v3f(p4bmrotorf ij [0]);
v3f(p4bMrotor[i] [11),
v3f(p4bmrotorli] [2]);
v3f(p4bmrotor[i] [3]);

endpolygonoQ;

for (i=0;i<4;i++)
n3f(pn5bmrotorfi]);
bgnpolygono;

v3f(p5bmrotor[i] [0]);
v3f(p5bmrotorji] [I J);
v3f~p5bMro~ri] [2]);
v3f(p5bmrotor[i] [3));
v3f(p5bmrotorji] [41);

endpolygono;

79

FILENAME :draw - il-pipe.c
CALLED BY .draw_cobra
CALLS
CREATED :20 Mar 89
MODIFID
AUTHOR :CPT(P) Mark J. Christian
PURPOSE :Draws the tail pipe of a Cobra helicopter

#include "Lightcons.h"
#include "gl.h"

draw taii-pipeo

exenfot{nbp8[]
extern float pn~btp[8131;
extern float pn~btp[8[31;

extern float p~btp[8]1[31

int i;

1* draw the Cobra tail pipe *

lmbind(MATERIAL,TAILPIPE);
for (i=0;i<8;i++)[

n3f(pn4btp[iJ);
bgnpolygono;

v3f(p4btp[iI [0]);
v3f(p4btp[i][11);
v3f(p4btp[i][2]);
v3f(p,4btpijl3D);

endpolygono;

n3f(pn8btp);
bgnpolygono;

v3f(p8btp[01);
v3f(p8btp[1]);
v3f(p8btp[2]);
v3f(p8btpl3]);
v3f(p8btp[4]);
v3f(p8btp[5]);
v3f(p8btp[6]);
v3f(p8btpl7]);

endpolygono;

FILENAME :draw-tail-rotor.c
CALLED BY :draw-cobra
CALLS
CREATED 19 Mar 89
MODIFIED
AUTHOR :CPT(P) Mark J. Christian
PURPOSE Draws the tail rotor of a Cobra helicopter

80

#include "Lightcons.h"
#include "gl.h"

draw_tail-rotorO

extern float pn4gshaft[5][31;
extern float pn7btrotor[4]H3];

extern float p4gshaft[5li41[31;
extern float p7btrotor[41[7][3];

int i;

/* draw the Cobra tail rotor ~

Imbind(MATERIAL,ROTORSHAFT),
for (1=0;1,<5;i+*) (

n3f(pn4gshaft[iD;
bgnpolygono;

v3f(p4gshaft[i][OJ);
v3f(p4gshaft[i][1]);
v3f(p4gshaft[i](21);
v3f(p4gshaft[i][3]);

endpolygono;

lmbind(MATERJAL,TROTORBLADE);
for (i=O;i<4;i++)

n3f(pn7btrotorti)
bgnpolygono;,

v3f(p7btrotor[ij[0]);
v3f(p7btrotorfi] [I];
v3f(p7btrotor[iI [2]);
v3f(p7btrotorfiJ [3]);
v~f(p7btrotor[i] [4]);
v3f(p7btrotor[i] [51);
v3f(p7btrotor[i) [6]);

endpolygono;

FILENAME get-next-alt.c
CALLED BY :addveh
CALLS :NONE
CREATED :20 May 19 89
PERSON CPT(P) Mark J. Christian
MODIFIED
PERSON
PURPOSE :Searches flight data records to find those that contain

flight recorder ahitude data.

#include "Cast.h"

Fit-data-rec *get-nextalt(recptr)

81

Fit-data_rec *recptr,

Fit -data -rec *save-pt;
Boolean done;

save-ptr = recjtr,
done = FALSE;

while((rec..ptr->next != NULL) && (!done))

rec-.ptr = rec-flr->next;
if((rec..ptr->frequency -= TYPE15) 11 (rec-pr->frequency =TYPE 18))

done = TRUE;

if(!done)
retum(save-ptr);

else
return(rec..ptr);

FILENAME : set-driven-view.c
CALLED BY : drawterrainxc
CALLS calc-iook-parameters
CREATED
PERSON MAJ William Teter
MODIFIED :15 May 89 (modified for aerial platforms with roll, pitch, & yaw)
PERSON :CPT(P) Mark J. Christian
PURPOSE :Sets viewing projection and transformation for driven platform

#include "Cast.h"

#include <math.h>

set-driven-viewO

extern float x-dispofeyeRUMVEfITYPES[31;
extern float y-disp-ofeye[NUMVEIITYPES][3];
extern float z disp-of eye[NUMVEHTYPESI[31;
extern Vehicle * driven;
extern short eye-position;
extern short fov;

Coord JocaL-pxIocal..py,Iocal-pz;
Coord eye-x,eyeyeye-z;
float viewaz,viewelcv,viewroll,viewr;
float look-offset-anglc;

calc-lookparametes(x-dispofeye [driven->t] [eyeposition],
y-disp-of-eye [driven ->tI [eye~position],
z disp.ofeyedriven-xl][eye position],
&eye-x,&eye-y,&eye-z,&loc-al-px,&ocal-py,&local-pz);

perspective(fov, 1.0,0. 1,MAXLOOKDISTF);

f* calculate twist angle as combination of pitch and roll, i.e.

82

twist is eye effective roll *

if(eye..posiuion != OUTSIDE)
viewroll =
((float)cos((double)(-driven->lookaz *DTOR)) *driven->rolI * DTOR) +
((floatsin((double)(-driven->lookaz *DTOR)) driven->pitch *DTOR);else

viewroll = 0.0;

looat(eyex,eyey,eyez,localpxocaLpyocaL-pz,
(Angle)-(viewroll * RTOD * 10.0));

FILENAME transforim.body_to__world.c
CALLED BY :calcjook4paramneters

update-look4,os-cobra
CALLS loadunit
CREATED
PERSON :MMJ William Teter
MODIFIED :16 May 89 (modified for CAST program)
PERSON :CPT(P) Mark J. Christian
PURPOSE :Transforms coordinate in body ax-s to world coordinates.

Uses Iris matrix multiply microcode to avoid sins and cosines.

#include "Cast.h"
#include cmath.h>

transform_yjworld(azimuth,elevaflonrofl,dx,dy,dz,eyex,eyey,eyez)
float azimuth,elevationjroii;
float dx,d ,dz;
float *eyex,*eyey,*eyez;

Matrix offset-mx',

pushmatrixo;
ioadunitO; /* Load unit matrix ~

/* Assumes platform's nose points along positive X axis *
/* P(world) = P'(body) * ROT(azimuth) * ROT(elevation) *ROT(roll) *

/* Do rotations in reverse gimbal order */
rotate((Angle)(azimuth * RTOD * 10), 'Y')
rotate((Angle)(elevation * RTOD *10,Z)
rotate((Angle)(roll * RTOD * 1),,)

getmatrix(offset-mx); /* Get accumulated rotation matrix ~

/* Pre-mu'uply rotation matrix by offset vector to get
world coodinates.

*eye-x = dx *offset-mx[0]I0] + dy * offset mx[11[0) +
clz *offset mx[2][0];

*eye-y = dx *offsetmxfojlj + dy * offsctnx[Il]l I +
dz offset-mx[2j[1];

*eye-z = dx *offsetmxf0l[21 + dy * offset mx[l][21 +
dz *offset-mx(21[21;,

popmatrixo;

83

FILENAME :updatejlook-pos-cobraxc
CALLED BY calc-look-parameters
CALLS transform...body-tok_world
MODIFIED : 7/28/88
PERSON David Jennings
MODIFIED :16 May 89 (modified for CAST using version in APS by MAJ Teter)
PERSON CPT(P) Mark J. Christian
PURPOSE :Determine flyer's look position (px,py,pz).

#include "Cast.h"
. include :math.h>

update-look-osobra(eye xeyey,eyez,azimuth,eevation,rol,
viewaz,viewelev,px,py,pz)

float eye-x,eye.y,eye - azimuthelevationrol,viewaz,viewelev;
float *px,*py,*pz;.

float wdx,wdy,wdz; f* offset in world coordinates *
float bodyoffset~y = (float)(MAXLOOKDISTF * sin((double)viewelev));
float distance = (float)(MAXLOOKDISTF * cos((double)viewelev));
float body_offset -x = (float)(distance *(float)cos((double)viewaz));

float body-offset~z = -(float)(distance *(float)sin((double)viewaz));

transform-bodyto-world(azimuth,elevationrol,body-offsetx,
bodyoffsety,bodyoffset,&wdx,&wdy,&wdz);

*x= eye~x + wdx;
*py = eye-j' + wdy;

*z= eyez + wdz;

84

LIST OF REFERENCES

1. Army Regulation 385-40, Accident Reporting and Records, 1 April 1987

2. "MY, how time flies when you're making progress", United States Army
Aviation Digest, February 1989

3. Department of the Army Pamphlet 385-95, Aircraft Accident Investigation
and Reporting, 15 June 1983

4. Army Regulation 385-95, Army Aviation Accident Prevention, 15 November
1982

5. "Flight data recorders are paying off', United States Army Aviation Digest,
Fcbruary 1989

6. United States Army Safety Center, Flight Data Recorder Parameter List, 22
June 1988

7. Fichten, Mark A., and Jennings, David H., Meaningful Real-Time Graphics
Workstation Performance Measurements, Master's Thesis, Naval
Postgraguate School, Monterey, California, November 1988

8. United States Army Safety Center, Transcription Program - Output Format, 3
March 1988

9. Field Manual 1-5, Instrument Flying and Navigation for Army Aviators, 15
December 1984

10. Smith, Douglas B., and Streyle, Dale G., An Inexpensive Real-Time
Interactive Three-Dimensional Flight Simulation System, Master's Thesis,
Naval Postgraduate School, Monterey, California, July 1987

11. Oliver, Michael R., and Stahl, David J., Interactive, Networked, Moving
Platform Simulators, Master's Thesis, Naval Postgraduate School, Monterey,
California, February 1988

12. Shannon, Larry R., and Teter, William A., APS, An Autonomous Platform
Simulator, Master's Thesis, Naval Postgraduate School, Monterey, California,
June 1989

13. Strong, Randolph P., and Winn, Michael C., The Moving Platform Simulator
H: A Networked Real-Time Visual Simulator with Distributed Processing and
Line-of-Sight Displays, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1989

85

14. Munson, Steven A., Integrated Support for Manipulation and Display of 3D
Objects for the Command and Control Workstation of the Future, Master's
Thesis, Naval Postgraduate School, Monterey, California, June 1989

86

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Dr. Michael J. Zyda 3
Naval Postgraduate School
Code 52, Department of Computer Science
Monterey, California 93943-5100

4. CPT Mark J. Christian 3
107 North 35th Street
Clear Lake, Iowa 50428

5. Commander 3
United States Army Safety Center
Attention: CSSC-SE
Fort Rucker, Alabama 36362-5363

6. Mr. Mike Tedeschi 1
United States Army Test and Experimentation Command
Attention: ATCT-TE-TM
Fort Ord, California 93941-7000

87

